Quantum supremacy

Article

Quantum supremacy using a programmable superconductingprocessor

https://doi.org/10.1038/s41586-019-1666-5 Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute', Kunal Arya', Ryan Babbush', Dave Bacon', Joseph C. Bardin', Rami Barends', Rusak Biswas³, Eergis Boixo¹, Fernando C. S. L. Brandso^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen¹⁶, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Gaerin¹, Stove Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann¹⁴, Alan Ho¹, Markus Hoffmann¹, Trent Huarg¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang', Dvir Ka'ri', Kostyantyn Kechedzhi', Julian Kelly', Paul V. Klimov', Sergey Knysh', Alexander Korotkov¹⁴, Fedor Kostritsa¹, David Landhuis¹, Nike Lindmark¹, Erik Lucero¹ Dmitry Lyakh⁹, Salvatore Mandrà^{3,9}, Jarrod R. McClean¹, Matthew NcEwen⁵, Anthony Megrant', Xiao MI', Kristel Michielsen"", Masouc Mohseni', Josh Mutus', Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov, John C. Platt', Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹ Nicholas C. Rubin', Daniel Sank', Kevin J. Satzinger', Vadim Smelyanskiy', Kevin J. Sung¹³³, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga¹³⁴, Theodore White¹, Z. Jamie Yao', Ping Yeh', Adam Zalcman', Hartmut Neven' & John M. Martinis¹⁵⁺

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor¹. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state space of dimension 253 (about 10%). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This cramatic increase in speed compared toall known classical algorithms is an experimental realization of quantum supremacy5-14 for this specific computational task, heralding a muchanticipated computing paradigm.

In reaching this milestone, we show that quantum speedup is achievewould be an effective tool with which to solve problems in physics able in a real-world system and is not precluded by any hidden physical and chemistry, given that it is exponentially costly to simulate large laws. Quantum supremacy also heralds theera of noisy intermediatecuantum systems with classical computers. Realizing Feynman's vision scale quantum (NISQ) technologies". The benchmark task wedemonposes substantial experimental and theoretical challenges. First. can strate has an immediate application ingenerating certifiable random a quantum system be engineered to perform a computation in a large numbers (S. Aaronson, manuscript in preparation); other initial uses enough computational (Hilbert) space and with allow enough error for this new computational capability may include optimization^{4,2} rate to provide a quantum speedup? Second, can we formulate a prob-machine learning¹⁸⁻³, materials science and chemistry²²⁻²⁴. However, lem that is hard for a classical computer but easy for a quantum com- realizing the full promise of quantum computing (using Shor's algorithm puter? Bycomputing such a benchmark task on our superconducting for factoring, for example) still requires technical leaps to engineer cubit processor, we tackle both questions. Our experiment achieves fault-tolerant logical qubits²⁵⁻²⁹. cuantum supremacy, amilestore or the path to full-scale quantum To achieve quantum supremacy, we made a number of technicomputing⁸⁻¹⁴.

cal advances which also pave the way towards error correction. We

Google AI Quantum, Mountain View, CA, USA. *Department of Electrical and ComputerEngineering University of Massachusetts Amherst, Amherst, MA, USA. *Quantum Artificial Intelligence Laboratory (OuALL) NASA Ames Research Center, Wolflet Field, CA. USA. flustitute for Ouantum Information and Matter, Caltsch, Pasadesa, CA. USA. 'Department of Physics, University of California, Santa Barbara, CA, USA. "Fredrich-Alexander Jniversity Erangen-Nürrberg (FAU), Department of Physica, Edangen, Germany, 'Quantum Computing Institute, Oak Bidge National omputer Engineering, University of I Iverside, CA, USA, "Scientific Computing, Osk Ridge Leader Cak Ridge National Laboratory, Oak Ridge, TV, USA. "Stinger Ghaffaran Technologies Inc., Greenbelt, MD, USA. "Institute for Advanced Simulation, Xilich Supercomputing Centre, schungsissistrum Jüllich, Jülich, Germany, ^oRWTH Aschen University, Aschen, Cermany, ¹⁰Department of Electrical Exgineering and Computer Science, University of Michigan, Ann Arbo-, M, USA. "Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 'e-mail: jmatinis@google.com

NISQ-era

Noisy Intermediate- Scale Quantum. Here "intermediate scale" refers to the size of quantum computers which will be available in the next few years, with a number of qubits ranging from 50 to a few hundred. *50 qubits* is a significant milestone, because that's beyond what can be simulated by brute force using the most powerful existing digital supercomputers. *"Noisy"* emphasizes that we'll have imperfect control over those qubits; the noise will place serious limitations on what quantum devices can achieve in the near term.

Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA 30 July 2018

Errors!

Control Sequence for Quantum Supremacy

- Simultaneous gates all qubits
- General purpose algorithm
 - Cycle with 1- and 2-qubit gates

Control Sequence for Quantum Supremacy

- Simultaneous gates all qubits
- General purpose algorithm
 - Cycle with 1- and2-qubit gates

$$X^{1/2} \equiv R_X(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix},$$
$$Y^{1/2} \equiv R_Y(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},$$
$$W^{1/2} \equiv R_{X+Y}(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{i} \\ \sqrt{-i} & 1 \end{bmatrix}$$
$$\text{fSim}(\theta, \phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -i\sin(\theta) & 0 \\ 0 & -i\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & e^{-i\phi} \end{bmatrix}$$

Qubit Speckle

N.Charles et al., Science 360, no. 6385 (2018): 195-199

Validation Algorithm for Quantum Supremacy

- Checks general-purpose circuit
- Randomly chosen gates: qubit speckle
 - Sensitive to single qubit errors
 - Complex & difficult to simulate

Validation Algorithm for Quantum Supremacy

- Checks general-purpose circuit ٠
- Randomly chosen gates: qubit speckle ۲
 - Sensitive to single qubit errors 0
 - Complex & difficult to simulate 0

Cross entropy fidelity is useful:

Learn control map

Quantum Supremacy Data

Quantum Supremacy Data

Computational Cost

Quantum supremacy

Article

Quantum supremacy using a programmable superconductingprocessor

https://doi.org/10.1038/s41586-019-1666-5 Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute', Kunal Arya', Ryan Babbush', Dave Bacon', Joseph C. Bardin', Rami Barends', Rusak Biswas³, Eergis Boixo¹, Fernando C. S. L. Brandso^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen¹⁶, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Gaerin¹, Stove Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann¹⁴, Alan Ho¹, Markus Hoffmann¹, Trent Huarg¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang', Dvir Ka'ri', Kostyantyn Kechedzhi', Julian Kelly', Paul V. Klimov', Sergey Knysh', Alexander Korotkov¹⁴, Fedor Kostritsa¹, David Landhuis¹, Nike Lindmark¹, Erik Lucero¹ Dmitry Lyakh⁹, Salvatore Mandrà^{3,9}, Jarrod R. McClean¹, Matthew NcEwen⁵, Anthony Megrant', Xiao MI', Kristel Michielsen"", Masouc Mohseni', Josh Mutus', Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov, John C. Platt', Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹ Nicholas C. Rubin', Daniel Sank', Kevin J. Satzinger', Vadim Smelyanskiy', Kevin J. Sung¹³³, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga¹³⁴, Theodore White¹, Z. Jamie Yao', Ping Yeh', Adam Zalcman', Hartmut Neven' & John M. Martinis¹⁵⁺

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor¹. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state space of dimension 253 (about 10%). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This cramatic increase in speed compared toall known classical algorithms is an experimental realization of quantum supremacy5-14 for this specific computational task, heralding a muchanticipated computing paradigm.

In reaching this milestone, we show that quantum speedup is achievewould be an effective tool with which to solve problems in physics able in a real-world system and is not precluded by any hidden physical and chemistry, given that it is exponentially costly to simulate large laws. Quantum supremacy also heralds theera of noisy intermediatecuantum systems with classical computers. Realizing Feynman's vision scale quantum (NISQ) technologies". The benchmark task wedemonposes substantial experimental and theoretical challenges. First. can strate has an immediate application ingenerating certifiable random a quantum system be engineered to perform a computation in a large numbers (S. Aaronson, manuscript in preparation); other initial uses enough computational (Hilbert) space and with allow enough error for this new computational capability may include optimization^{4,2} rate to provide a quantum speedup? Second, can we formulate a prob-machine learning¹⁸⁻³, materials science and chemistry²²⁻²⁴. However, lem that is hard for a classical computer but easy for a quantum com- realizing the full promise of quantum computing (using Shor's algorithm puter? Bycomputing such a benchmark task on our superconducting for factoring, for example) still requires technical leaps to engineer cubit processor, we tackle both questions. Our experiment achieves fault-tolerant logical qubits²⁵⁻²⁹. cuantum supremacy, amilestore or the path to full-scale quantum To achieve quantum supremacy, we made a number of technicomputing⁸⁻¹⁴.

cal advances which also pave the way towards error correction. We

Google AI Quantum, Mountain View, CA, USA. *Department of Electrical and ComputerEngineering University of Massachusetts Amherst, Amherst, MA, USA. *Quantum Artificial Intelligence Laboratory (OuALL) NASA Ames Research Center, Wolflet Field, CA. USA. flustitute for Ouantum Information and Matter, Caltsch, Pasadesa, CA. USA. 'Department of Physics, University of California, Santa Barbara, CA, USA. "Fredrich-Alexander Jniversity Erangen-Nürrberg (FAU), Department of Physica, Edangen, Germany, 'Quantum Computing Institute, Oak Bidge National omputer Engineering, University of I Iverside, CA, USA, "Scientific Computing, Osk Ridge Leader Cak Ridge National Laboratory, Oak Ridge, TV, USA. "Stinger Ghaffaran Technologies Inc., Greenbelt, MD, USA. "Institute for Advanced Simulation, Xilich Supercomputing Centre, schungsissistrum Jüllich, Jülich, Germany, ^oRWTH Aschen University, Aschen, Cermany, ¹⁰Department of Electrical Exgineering and Computer Science, University of Michigan, Ann Arbo-, M, USA. "Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 'e-mail: jmatinis@google.com

Sycamore Processor: 53 qubits

Superconducting qubits

Superconducting qubits

 $E_J \to E_J^{\Sigma} \cos\left(\frac{\pi\Phi}{\Phi_0}\right) \sqrt{1 + d^2 \tan^2\left(\frac{\pi\Phi}{\Phi_0}\right)}, \quad d \simeq \frac{E_{J1} - E_{J2}}{E_{J1} + E_{J2}}.$

CQED circuit Quantum ElectroDynamics

dispersive regime

$$\hat{H}_{JC} \approx \hbar \Big[\omega_c + \frac{g^2}{\Delta} \hat{\sigma}_z \Big] (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) + \frac{\hbar}{2} \omega_q \hat{\sigma}_z$$

circuit Quantum ElectroDynamics

CQED

CQED

circuit Quantum ElectroDynamics

CQED

circuit Quantum ElectroDynamics on Google's device

Josephson junctions fabrication

shadow evaporation

SEM image courtesy of the Institute for Quantum Computing (IQC) at the University of Waterloo

Sycamore architecture (early prototypes)

Sycamore architecture fab

Qubit couplers

Wire connectivity

Chip packaging

Inside the dilution fridge

Control Hardware

Custom built High speed High precision

Susceptance at Resonance

