Expectation Values

Quantum Information and Computing Seminar

January 27, 2020

Qubits

A classical bit is an abstraction of a classical binary event (such as electricity flowing or not flowing through a wire). We label one of the events as 0 and the other as 1 .

A qubit, or quantum bit, is an abstraction of a quantum binary events (such as an electron being spin-up or spin-down). Therefore, they are represented as discrete quantum states as opposed to just the numbers 0 and 1 . Mathematically they are

$$
\begin{aligned}
|0\rangle & =\binom{1}{0} \\
|1\rangle & =\binom{0}{1}
\end{aligned}
$$

The quantum state of a qubit is represented by a complex-valued, 2×1 vector. It can be written as a linear combination of $|0\rangle$ and $|1\rangle$ as follows

$$
|q\rangle=\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1}=a|0\rangle+b|1\rangle
$$

where $a, b \in \mathbb{C}$.

Products

The Hermitian conjugate of a quantum state is its complex transpose and is represented as follows: If

$$
|q\rangle=\binom{a}{b}
$$

then

$$
\langle q| \equiv|q\rangle^{\dagger}=\left(\begin{array}{ll}
a^{*} & b^{*}
\end{array}\right)
$$

The inner product of two states $|\phi\rangle$ and $|\psi\rangle$ is given by $\langle\phi \mid \psi\rangle$.

Problem 1

Complete the following:

$$
\begin{aligned}
& \langle 0 \mid 0\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 \\
& \langle 0 \mid 1\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{1}=0 \\
& \langle 1 \mid 0\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{0}= \\
& \langle 1 \mid 1\rangle=
\end{aligned}
$$

As a general rule:

- $\langle a \mid b\rangle=1$ if $a=b$
- $\langle a \mid b\rangle=$

The outer product of two states ψ and ϕ is given by $|\psi\rangle|\phi\rangle$.

Problem 2

Complete the following:
$|0\rangle\langle 0|=\binom{1}{0}\left(\begin{array}{ll}1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
$|0\rangle\langle 1|=\binom{1}{0}\left(\begin{array}{ll}0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
$|1\rangle\langle 0|=\binom{0}{1}\left(\begin{array}{ll}1 & 0\end{array}\right)$
$|1\rangle\langle 1|=$

Problem 3

Finish the following mixed products by using the results of Problem 1:

$$
\begin{aligned}
(|0\rangle\langle 0|)|0\rangle & =|0\rangle(\langle 0 \mid 0\rangle)=|0\rangle(1)=|0\rangle \\
(|0\rangle\langle 0|)|1\rangle & =|0\rangle(\langle 0 \mid 1\rangle)=|0\rangle(0)=0 \\
(|1\rangle\langle 0|)|0\rangle & =|1\rangle(\langle 0 \mid 0\rangle)= \\
(|1\rangle\langle 0|)|1\rangle & =
\end{aligned}
$$

Now finish complete the following rules:

- When multiplying the outer-product $|0\rangle\langle 0|$ by the state $|x\rangle$, the outer-product "checks" if $x=0$ because
- if $x=0$, the state remains unaffected
- if $x=1$, the state is destroyed
- When multiplying the outer-product $|1\rangle\langle 1|$ by the state $|x\rangle$, the outer-product "checks" if $x=1$ because
- if $x=0$,
- if $x=1$,
- The outer-product $|1\rangle\langle 0|$ can be though of as a "raising" operator because, when multiplied by the state $|x\rangle$
- if $x=0$, the outer-product "raises" the state from $|0\rangle$ to $|1\rangle$
- if $x=1$, the state is destroyed as 1 cannot be raised.
- The outer-product $|0\rangle\langle 1|$ can be though of as a "lowering" operator because, when multiplied by the state $|x\rangle$
- if $x=0$,
- if $x=1$,

The tensor product of two $n \times n$ matrices

$$
A=\left(\begin{array}{cccc}
a_{00} & a_{01} & \ldots & a_{0 n} \\
a_{10} & a_{11} & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 0} & \ldots & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{cccc}
b_{00} & b_{01} & \ldots & b_{0 n} \\
b_{10} & b_{11} & & \vdots \\
\vdots & & \ddots & \vdots \\
b_{n 0} & \ldots & \ldots & b_{n n}
\end{array}\right)
$$

is defined to be

$$
A \otimes B=\left(\begin{array}{cccc}
a_{00} B & a_{01} B & \ldots & a_{0 n} B \\
a_{10} B & a_{11} B & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 0} B & \ldots & \ldots & a_{n n} B
\end{array}\right)
$$

Problem 4

The tensor product can be used to form a larger space of qubits. Using the notation $|a b\rangle=|a\rangle \otimes|b\rangle$ we can create a 2-qubit space by taking the tensor products of the single qubits. For example, if

$$
|a\rangle=\binom{a_{0}}{a_{1}} \quad|b\rangle=\binom{b_{0}}{b_{1}}
$$

then

$$
|a b\rangle=|a\rangle \otimes|b\rangle=\binom{a_{0}}{a_{1}} \otimes\binom{b_{0}}{b_{1}}=\binom{a_{0}\binom{b_{0}}{b_{1}}}{a_{1}\binom{b_{0}}{b_{1}}}=\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1} \\
a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)
$$

Complete the following

$$
\begin{aligned}
& |00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\binom{1\binom{1}{0}}{0\binom{1}{0}}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& |01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\binom{1\binom{0}{1}}{0\binom{0}{1}}= \\
& |10\rangle=\binom{0}{1} \otimes\binom{1}{0}= \\
& |11\rangle=
\end{aligned}
$$

An important property of tensor products is the following

$$
\left(A_{1} \otimes A_{2}\right)\left(B_{1} \otimes B_{2}\right)=A_{1} B_{1} \otimes A_{2} B_{2}
$$

Gates

A quantum algorithm can be written in terms of a quantum circuit which shows how qubits are manipulated by quantum gates, which are 2×2, unitary matrices.

A gate U is represented in a quantum circuit as

$$
|\psi\rangle-U-U|\psi\rangle
$$

which means $|\psi\rangle \rightarrow U|\psi\rangle$.
Applying U to the state and then V

$$
|\psi\rangle-U-V-V U|\psi\rangle
$$

is the same as $|\psi\rangle \rightarrow V U|\psi\rangle$. Note the switched order.
The Pauli gates correspond to the Pauli matrices.

$$
\begin{aligned}
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
X & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
Y & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
Z & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

To see how Pauli-gates are used to take expectation values, we'll write them in terms of outerproducts.

Problem 5

Complete the following:
Let's see how the X gate affects qubits.

$$
\begin{aligned}
& X|0\rangle=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1}=|1\rangle \\
& X|1\rangle=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}=|0\rangle
\end{aligned}
$$

We've discovered that X "flips" the qubit that it acts on, from $|0\rangle$ to $|1\rangle$ and vice-verse. Therefore, we can write X in terms of outer-products as follows:

$$
X=|1\rangle\langle 0|+|0\rangle\langle 1|
$$

because then

$$
\begin{aligned}
X|0\rangle & =(|1\rangle\langle 0|+|0\rangle\langle 1|)|0\rangle
\end{aligned}=|1\rangle\langle 0 \mid 0\rangle+|0\rangle\langle 1 \mid 0\rangle=|1\rangle(1)+|0\rangle(0)=|1\rangle, ~=|1\rangle\langle 0 \mid 1\rangle+|0\rangle\langle 1 \mid 1\rangle=|1\rangle(0)+|0\rangle(1)=|0\rangle
$$

Now let's look at the Y gate

$$
\begin{aligned}
& Y|0\rangle=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i}=i|1\rangle \\
& Y|1\rangle=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{1}=\binom{-i}{0}=
\end{aligned}
$$

Therefore, we can write Y in terms of outer-products as follows:

$$
Y=i|1\rangle\langle 0|-i|0\rangle\langle 1|
$$

because then

$$
\begin{aligned}
Y|0\rangle & =(i|1\rangle\langle 0|-i|0\rangle\langle 1|)|0\rangle=i|1\rangle\langle 0 \mid 0\rangle-i|0\rangle\langle 1 \mid 0\rangle= \\
Y|1\rangle & =(i|1\rangle\langle 0|-i|0\rangle\langle 1|)|1\rangle=
\end{aligned}
$$

Finally, let's look at the Z gate

$$
\begin{aligned}
& Z|0\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}= \\
& Z|1\rangle=
\end{aligned}
$$

Therefore, we can write Z in terms of outer-products as follows:

$$
Z=
$$

because then

$$
\begin{aligned}
& Z|0\rangle= \\
& Z|1\rangle=
\end{aligned}
$$

Bonus: I can be written in terms of outer-products as follows:

$$
I=
$$

We'll introduce two more gates, the Haddamard gate H and the phase gate S. They are defined as follows:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

Problem 6

Prove that $H Z H=X$

$$
\begin{aligned}
H Z H & =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =
\end{aligned}
$$

Prove that $S X S^{\dagger}=Y$

$$
\begin{aligned}
S X S^{\dagger} & =\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right)^{\dagger} \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right) \\
& =
\end{aligned}
$$

Show that $Y=\left(H S^{\dagger}\right)^{\dagger} Z\left(H S^{\dagger}\right)$ using the previous two results and the identity $(A B)^{\dagger}=$ $B^{\dagger} A^{\dagger}$.

Measurement

If a qubit is in the state

$$
|q\rangle=\binom{a}{b}
$$

then, when the qubit is measured

- the probability that $|0\rangle$ is measured is $P_{|\psi\rangle}(0)=|\langle 0 \mid q\rangle|^{2}=\left|\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{a}{b}\right|^{2}=|a|^{2}$
- the probability that $|1\rangle$ is measured is $P_{|\psi\rangle}(1)=|\langle 1 \mid q\rangle|^{2}=\left|\left(\begin{array}{ll}0 & 1\end{array}\right)\binom{a}{b}\right|^{2}=|b|^{2}$

Expectation Value

Every observable (thing one can observe) has a corresponding operator O. If particle is in a state $|q\rangle$ then the expected value of the observable corresponding to the operator O is given by

$$
\langle q| O|q\rangle
$$

Expectation Values

The following will demonstrate how to find the expectation value of a tensor string of Pauli spin matrices.

Expectation Value of Z

The expectation value of Z in state $|\psi\rangle$ is give by

$$
\begin{aligned}
E_{\psi}(Z) & =\langle\psi| Z|\psi\rangle \\
& =\langle\psi|(|0\rangle\langle 0|-|1\rangle\langle 1|)|\psi\rangle \\
& =\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle-\langle\psi \mid 1\rangle\langle 1 \mid \psi\rangle \\
& =|\langle 0 \mid \psi\rangle|^{2}-|\langle 1 \mid \psi\rangle|^{2} \\
& =P_{|\psi\rangle}(0)-P_{|\psi\rangle}(1)
\end{aligned}
$$

where $P_{|\psi\rangle}(x)$ is the probability that state $|\psi\rangle$ is measured to be $|x\rangle$.
So one creates the circuit

$$
|\psi\rangle-\quad \underset{ }{\infty}
$$

which means prepare the state ψ and measure. One does this over and over, counting C_{0}, the number of times one measures 0 and C_{1}, the number of times one measures 1. From these numbers, on can estimate the probability of measuring 0 and 1 as

$$
\begin{aligned}
P_{|\psi\rangle}(0) & =\frac{C_{0}}{C_{0}+C_{1}} \\
P_{|\psi\rangle}(1) & =\frac{C_{1}}{C_{0}+C_{1}}
\end{aligned}
$$

To find the expectation value of Z, one simply subtracts the probabilities as above:

$$
P_{|\psi\rangle}(0)-P_{|\psi\rangle}(1)=\frac{C_{0}-C_{1}}{C_{0}+C_{1}}
$$

Expectation Value of X

To find the expectation value of X, we are going to rotate our computation basis. Recall that $X=H Z H$. Thus

$$
\begin{align*}
E_{\psi}(X) & =\langle\psi| X|\psi\rangle \\
& =\langle\psi| H Z H|\psi\rangle \\
& =\left\langle H^{\dagger} \psi\right| Z|H \psi\rangle \\
& =\langle H \psi| Z|H \psi\rangle \\
& =E_{H \psi}(Z) \\
& =P_{H|\psi\rangle}(0)-P_{H|\psi\rangle}(1) \tag{1}
\end{align*}
$$

So one creates the circuit

estimates the probabilities, and subtracts them, as above.

Problem 7

Complete the following:

Expectation Value of \mathbf{Y}

To find the expectation value of Y, recall that $Y=S X S^{\dagger}$. Therefore $Y=\left(H S^{\dagger}\right)^{\dagger} Z\left(H S^{\dagger}\right)$. Thus

$$
\begin{aligned}
E_{\psi}(Y) & =\langle\psi| Y|\psi\rangle \\
& =
\end{aligned}
$$

So one creates the circuit

estimates the probabilities, and subtracts them, as above.
To summarize
$\begin{cases}\text { Expectation value of: } & \text { Apply: } \\ Z & I \\ X & H \\ Y & H S^{\dagger}\end{cases}$

String of Pauli's

Let's work out how to take the expectation value of a tensor-product string of Pauli matrices. For example, let's work out how to take the expectation value of $X \otimes Z$.

$$
\begin{aligned}
E_{\psi}(X \otimes Z) & =\langle\psi| X \otimes Z|\psi\rangle \\
& =\langle\psi|(H Z H) \otimes(I Z I)|\psi\rangle \\
& =\langle\psi|(H \otimes I)(Z \otimes Z)(H \otimes I)|\psi\rangle \\
& =\left\langle(H \otimes I)^{\dagger} \psi\right|(Z \otimes Z)|(H \otimes I) \psi\rangle \\
& =\langle(H \otimes I) \psi| Z \otimes Z|(H \otimes I) \psi\rangle \\
& =\left\langle\psi^{\prime}\right|(|0\rangle\langle 0|-|1\rangle\langle 1|) \otimes(|0\rangle\langle 0|-|1\rangle\langle 1|)\left|\psi^{\prime}\right\rangle \\
& =\left\langle\psi^{\prime}\right|(|00\rangle\langle 00|-|01\rangle\langle 01|-|10\rangle\langle 10|-|11\rangle\langle 11|)\left|\psi^{\prime}\right\rangle \\
& =\left\langle\psi^{\prime} \mid 00\right\rangle\left\langle 00 \mid \psi^{\prime}\right\rangle-\left\langle\psi^{\prime} \mid 01\right\rangle\left\langle 01 \mid \psi^{\prime}\right\rangle \\
& -\left\langle\psi^{\prime} \mid 10\right\rangle\left\langle 10 \mid \psi^{\prime}\right\rangle+\left\langle\psi^{\prime} \mid 11\right\rangle\left\langle 11 \mid \psi^{\prime}\right\rangle \\
& =\left|\left\langle 00 \mid \psi^{\prime}\right\rangle\right|^{2}-\left|\left\langle 01 \mid \psi^{\prime}\right\rangle\right|^{2}-\left|\left\langle 10 \mid \psi^{\prime}\right\rangle\right|^{2}+\left|\left\langle 11 \mid \psi^{\prime}\right\rangle\right|^{2} \\
& =P_{\psi^{\prime}}(00)-P_{\psi^{\prime}}(01)-P_{\psi^{\prime}}(10)+P_{\psi^{\prime}}(11)
\end{aligned}
$$

where I've defined $\psi^{\prime}=(H \otimes I) \psi$.

Problem 8

Work out the following expectation value:

$$
E_{\psi}(I \otimes X)=\langle\psi| I \otimes X|\psi\rangle
$$

This can be extended to tensor-strings of arbitrary length. We can also extend this to sums of tensor-strings because expectation value is linear. For example:

$$
\langle\psi|(X+Z)|\psi\rangle=\langle\psi| X|\psi\rangle+\langle\psi| Z|\psi\rangle
$$

The power of this is that, if one can write a Hamiltonian H in terms of a linear combination of tensor-strings of Pauli matrices, one can use a quantum computer to estimate the expectation values of H (the energy) of the system for a given state $|\psi\rangle$.

We are now equipped to learn about the variation quantum eigensolver.

