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Qubits

A classical bit is an abstraction of a classical binary event (such as electricity flowing or not
flowing through a wire). We label one of the events as 0 and the other as 1.

A qubit, or quantum bit, is an abstraction of a quantum binary events (such as an electron
being spin-up or spin-down). Therefore, they are represented as discrete quantum states as
opposed to just the numbers 0 and 1. Mathematically they are

The quantum state of a qubit is represented by a complex-valued, 2x1 vector. It can be
written as a linear combination of |0) and |1) as follows

gy = (Z) :a(é) +b® — al0)+b]1)

where a,b € C.

Products

The Hermitian conjugate of a quantum state is its complex transpose and is represented as
follows: If

then
(al =la)' = (a ")
The inner product of two states |¢) and |¢) is given by (¢[)).

Problem 1



Complete the following:
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As a general rule:
e (alb) =1ifa=1b
o (alb) =

The outer product of two states ¢ and ¢ is given by [1)) |¢).

Problem 2

Complete the following:

Problem 3

Finish the following mixed products by using the results of Problem 1:

Now finish complete the following rules:

e When multiplying the outer-product |0) (0] by the state |x), the outer-product “checks”
if x = 0 because

— if x = 0, the state remains unaffected

— if x = 1, the state is destroyed




e When multiplying the outer-product |1) (1] by the state |x), the outer-product “checks”
if x = 1 because

—ifx =0,
—ifz =1,

e The outer-product |1) (0] can be though of as a “raising” operator because, when
multiplied by the state |z)

— if x = 0, the outer-product “raises” the state from |0) to |1)
— if x = 1, the state is destroyed as 1 cannot be raised.

e The outer-product |0) (1] can be though of as a “lowering” operator because, when
multiplied by the state |z)

—ifx =0,
—ifx =1,

The tensor product of two n X n matrices

oo Go1 ... Qon boo bor ... bon
A — aio a1 : . B= bio bu
Ao +o-  oer Qpn bo .. ... by
is defined to be
apnB apiB ... ag.B
A% B — a 0B a1 B '
an(.)B el am.lB

Problem 4

The tensor product can be used to form a larger space of qubits. Using the notation
lab) = |a) ® |b) we can create a 2-qubit space by taking the tensor products of the single

qubits. For example, if
) - bo
o= (%) =)

then
a bo aobo
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Complete the following
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An important property of tensor products is the following

(A1 ® Ay) (B1 @ By) = A1 By @ Ay By

Gates

A quantum algorithm can be written in terms of a quantum circuit which shows how qubits
are manipulated by quantum gates, which are 2x2, unitary matrices.

A gate U is represented in a quantum circuit as

%) U )
which means |¢)) — U [¢).
Applying U to the state and then V'

) —{U—VI— VU
is the same as [¢)) — VU [¢)). Note the switched order.

The Pauli gates correspond to the Pauli matrices.

= 1)

7= 2)

To see how Pauli-gates are used to take expectation values, we’ll write them in terms of outer-
products.

Problem 5



Complete the following:
Let’s see how the X gate affects qubits.

o= (1)) -0
=)0 -

We've discovered that X “flips” the qubit that it acts on, from |0) to |1) and vice-verse.
Therefore, we can write X in terms of outer-products as follows:

X = 1) (0] + |0) (1
because then

X0} = (I1) (0] + 10) 1]} [0) = [1) 0]0) +]0) {1]0) = [1) (1) +10) (0) = [1)
X1 = (11) (0] +0) (1) [1) = [1) (0]1) + |0) {1]1) = [1) (0) + |0) (1) = [0}

Now let’s look at the Y gate

0 —2\ (1 0 :
=) ()= () -
0 —i\ [0 —1
=) () ()
Therefore, we can write Y in terms of outer-products as follows:
Y =i[1) (0] —[0) (1]
because then

Y'|0) = (¢[1) (O] = 210) (1) [0) = 2 1) {0]0) — [0} (1]0) =
Y1) = (@[1) (0] = #]0) (1]) |1)

Finally, let’s look at the Z gate
1 0 1
0= 5) (o) -
Z1) =
Therefore, we can write Z in terms of outer-products as follows:

7 —




because then

Z10) =
Z1) =

Bonus: I can be written in terms of outer-products as follows:

I =
We’ll introduce two more gates, the Haddamard gate H and the phase gate S. They are defined
as follows:
) )
Problem 6

Prove that HZH = X

Prove that SXSt =Y

Show that Y = (HS*)T Z (HST) using the previous two results and the identity (AB)T =
BTAT,

Measurement

If a qubit is in the state

then, when the qubit is measured
2
= |al?

e the probability that |0) is measured is P (0) = 10]g)]* = ‘(1 0) (Z)

2

e the probability that |1) is measured is P (1) = (1) = ‘(O 1) (Z) = |b|?




Expectation Value

Every observable (thing one can observe) has a corresponding operator O. If particle is in a
state |¢) then the expected value of the observable corresponding to the operator O is given
by

(¢|0lq)

Expectation Values

The following will demonstrate how to find the expectation value of a tensor string of Pauli
spin matrices.

Expectation Value of Z
The expectation value of Z in state |¢) is give by

Ey(Z) = ¥|Zy)
= ([ (10) (0] = 1) (1]) [¥)
= ([0) (0]¢) — (1) (1]4)
= [(0[y)[* — [(L]e)]”
= Py (0) = Pyy(1)

where Py (z) is the probability that state |¢) is measured to be |x).

So one creates the circuit

)

which means prepare the state 1) and measure. One does this over and over, counting Cj, the
number of times one measures 0 and C;, the number of times one measures 1. From these
numbers, on can estimate the probability of measuring 0 and 1 as

To find the expectation value of Z, one simply subtracts the probabilities as above:
G-y
Co+ C4

Byy(0) = Py (1)

Expectation Value of X

To find the expectation value of X, we are going to rotate our computation basis. Recall that
X =HZH. Thus

Ey(X) = (Y| X |4)
= (Y|HZH[Y)
= (H"|Z|Hy)
= (HY|Z|HY)
= Eny(Z)
= Ppy)(0) — Py (1) (1)



So one creates the circuit

[¥)

estimates the probabilities, and subtracts them, as above.

Problem 7

Complete the following:

Expectation Value of Y

Thus

Ey(Y) = (0[Y¢)

So one creates the circuit

) — 8t H 1A

estimates the probabilities, and subtracts them, as above.

To find the expectation value of Y, recall that Y = SXST. Therefore Y = (HST)T A (HST).

To summarize

Expectation value of:  Apply:

A I
X H
Y HST

String of Pauli’s

Let’s work out how to take the expectation value of a tensor-product string of Pauli matrices.

For example, let’s work out how to take the expectation value of X ® Z.




Ey(X®Z)= (WX ®ZlY)

= WI(HZH) ® (IZ1)[¢)

= WIHI)(Z©Z)(HI)lp)

= (Ho D"W|[(Z® Z)|(H ® )

= (Ho Y|z Z|(H © 1))

= ('](10) (O] — [1) (1]) ® (|0) (O] — [1) (1])[¥)
= (¥[(]00) (00] — [01) (O1] — |10) (10] — |11) (11[)|¢")
= (¢'[00) {00[) — (4']01) (01[¢")

— (Y'[10) (1019") + (¥'|11) (11[¢)

= [{00[¢")|* — [{01]¢)[* = [(10[&")[* + [(11]¢)[’
= Py(00) — Py(01) — Py (10) + Py (11)

where I've defined ¢/ = (H ® I)1.

Problem 8

Work out the following expectation value:

Ey(I®X)= (Y|l X[y)

This can be extended to tensor-strings of arbitrary length. We can also extend this to sums of
tensor-strings because expectation value is linear. For example:

WX + 2)[v) = WIX[P) + (| Z]¢)

The power of this is that, if one can write a Hamiltonian H in terms of a linear combination of
tensor-strings of Pauli matrices, one can use a quantum computer to estimate the expectation
values of H (the energy) of the system for a given state |¢).

We are now equipped to learn about the variation quantum eigensolver.



