
QuIC Seminar 9
Introduction to the Query Model of Quantum
Computing

Contents
9.1 The Gate (Circuit) Model . 40
9.2 The Query Model . 40
9.3 Why Care about the Query Model? . 41
9.4 The Deustch-Jozsa Algorithm . 42

9.4.1 Defining the Problem . 42
9.4.2 Solving the Problem . 43
9.4.3 Discussion of the DJ Algorithm . 43

Last semester we introduced the gate model or circuit model of quantum computing1 and saw several
algorithms including quantum teleportation and phase estimation. These algorithms are completely specified
by the set of quantum gates acting on them. We’ll first recap this model of quantum computing and then
introduce the query model, which is a superset of the gate model that allows for one additional operation
called a query. When you first see the query model, it looks like a formal excuse for saying we have no idea
how to design quantum algorithms2 so we’ll then spend some time justifying why we even care about this
model.

The biggest reason we care is this is what historically led to Shor’s algorithm for polynomial time
factoring, the most famous result in quantum computing and one of the most famous, important results
in all of computer science, physics, mathematics, history, philosophy, music3... It was so impactful that
it led some famous scientists to change fields4. We’ll be building up to Shor’s algorithm the same way it
happened historically, first looking at query model algorithms that are interesting but not necessarily useful,
since they’re written in terms of a black box. Peter Shor built off these algorithms to come up with his own
black box algorithm, but then finished the work by instantiating the black box, leading to a polynomial time
factoring algorithm that could break essentially all of moden public key cryptography if a good quantum
computer were built.

1It’s called a circuit because classical computers use circuits, but then it was realized there’s no concept of a “loop” in a
quantum “circuit” like there is in a classical circuit. So, people started calling it the gate model instead, since it works by
throwing in a bunch of quantum gates.

2It kind of is...
3Okay maybe I got carried away with music. Yet again there’s a soundcloud page that posts music corresponding to (and

inspired from) quantum circuits. See https://soundcloud.com/quantum-circuit-songs. Don’t ask me how I know.
4John Preskill was one. See https://blog.ycombinator.com/john-preskill-on-quantum-computing/.

39

QUIC SEMINAR 9. INTRODUCTION TO THE QUERY MODEL OF QUANTUM COMPUTING 40

9.1 The Gate (Circuit) Model

The gate model of quantum computing is really just a formal definition of what we mean by a quantum
computer.

Definition 9.1 (Gate model of quantum computing.). The gate model of quantum computing consists
of (1) a set of qubits, sometimes broken up into registers (subsets); (2) an ordered set of quantum gates
acting on qubits; and (3) a set of measurements on one or more qubits.

This is exactly what we mean by a quantum computer. It’s something that implements operations known
as quantum gates on a set of qubits, and then measures some or all of the qubits to get a classical bit string
as output. The set of operations are ordered in that the order of the gates matters as it determines the
algorithm.

9.2 The Query Model

The query model is the same as the gate model with one key addition: access to a “black box” or oracle that
queries some function f that we want to learn about. Let’s make this more precise.

First, let f be a function on bit strings of length m to bit strings of length n, i.e.

f : {0, 1}m → {0, 1}n. (9.1)

This function is going to be of interest to us in that we want to determine something about it. For example,
in the Deustch-Jozsa algorithm we’ll see later, we’ll consider a function on bit strings of length 1 (i.e., just
a single bit) and ask if it’s constant or not. Other algorithms always put some special structure into the
function f that’s “easy to see quantumly but hard to see classically.” This will become clear when we look
at particular examples.

What is this mysterious oracle anyhow? How does it tell us information about f? It does so in one of
two ways, defined below.

Definition 9.2 (Qubit Query). Let f : {0, 1}m → {0, 1}n. A qubit query is a transformation Qf that
acts on an input register of m qubits, labeled |x⟩, and writes the value of f(x) into an answer register
of n qubits labeled |a⟩ via the following:

Qf |x, a, w⟩ = |x, a⊕ f(x), w⟩. (9.2)

Here, ⊕ denotes addition modulo two, and the register |w⟩ denotes any/all qubits not involved in the
query but may be doing some other work.

Exercise 41: Prove that the qubit query in (9.2) is unitary—this is quantum computing after all!
(Hint: prove it’s self inverse.)

The other type of query, known as a phase query, is defined below.

Definition 9.3. Let f : {0, 1}m → {0, 1}. A phase query is a transformation Qf that acts on an input
register of m qubits, labeled |x⟩, and writes the value of f(x) into the phase of the resulting state via

Qf |x, c, w⟩ = (−1)f(x)·c|x, c, w⟩. (9.3)

Here, the register of one qubit labeled |c⟩ is a control register that controls whether the query happensa.
As above, the register |w⟩ is any/all qubits doing work that are not involved in the query.

aSetting c = 0 guarantees that nothing happens in the query.

40

QUIC SEMINAR 9. INTRODUCTION TO THE QUERY MODEL OF QUANTUM COMPUTING 41

Exercise 42: Prove that the phase query (9.3) is unitary.

Exercise 43: Prove that the qubit query (9.2) and the phase query (9.3) are equivalent. That is, prove
any algorithm with only qubit queries can be done by an algorithm with only phase queries, and vice versa.

Example 1: Examples of queries.
These definitions might seem a bit abstract by presenting them in the most general way. For concreteness,
let f be a function on one bit, f : {0, 1} → {0, 1}, and consider a quantum algorithm with only one
register, the input register |x⟩ where x ∈ {0, 1}. (That is, x labels a computational basis state.) Then,
the phase query (9.3) is simply

Qf |x⟩ = (−1)f(x)|x⟩. (9.4)

We could extend this to some arbitrary qubit state (not strictly a computational basis state) by acting
on the state, for example, |+⟩ = |0⟩+ |1⟩ (up to normalization). Then,

Qf |+⟩ = Qf (|0⟩+ |1⟩) = Qf |0⟩+Qf |1⟩ = (−1)f(0)|0⟩+ (−1)f(1)|1⟩. (9.5)

This form of “quantum parallelism” is key to getting “rapid solutions of problems by quantum computa-
tion.”a

aReference to the title of the first “fast” quantum algorithm paper by David Deustch and Richard Jozsa. See
https://www.isical.ac.in/ rcbose/internship/lectures2016/rt08deutschjozsa.pdf for the original paper, we’ll discuss this algo-
rithm shortly.

Now that we’ve discussed quantum queries, you may be asking what a classical query is. A classical
query is even simpler than a quantum one, and it works as follows.

Definition 9.4 (Classical query.). Let f : {0, 1}m → {0, 1}n. A classical query is a transformationa

that inputs a bit string z ∈ {0, 1}m and outputs f(z):

Cf (z) = f(z). (9.6)
aPedantic mathematicians might call it a functional.

We’re going to see examples of query model quantum algorithms that outperform query model classical
algorithms, where we’re measuring performance by number of queries made. I know what you’re thinking:
“Well of course the quantum query model is going to perform better. You cheated to allow it to query
multiple inputs at once!”

This is a fair point to raise, but it’s easily dismissed. At the surface, (9.5) looks like two of (9.6). The key
thing here is superposition. Quantum states can be in superpositions of basis states labelled by bit strings.
Classical states cannot—they’re simply one bit string. This model isn’t “cheating” by using multiple queries
at once, it’s exploiting the laws of quantum physics by using multiple queries at once. The difference is in
the model of computation, not in the type of query5.

9.3 Why Care about the Query Model?

You still may be thinking: “Okay, so even if I accept these types of queries, why on earth should I accept
the query model? We haven’t said anything about how to actually implement these queries in terms of the
quantum gates we know and love. What’s the point? Why do we care?”

This is a fair point that can be addressed as follows.

1. Query model algorithms can rule out fast quantum algorithms.
5“Well then why didn’t we define quantum queries and classical queries in the same way? The quantum definition looks all

weird with phases and addition modulo two.” The answer is that we have to define quantum queries this way to make them
reversible. Also, the concept of phase makes no sense in classical computing.

41

QUIC SEMINAR 9. INTRODUCTION TO THE QUERY MODEL OF QUANTUM COMPUTING 42

• Regardless of how to actually implement a query in terms of quantum gates, we can all agree
that a query is at least one quantum gate. Therefore, the number of queries is a lower bound
on the number of total gates. If a particular query model algorithm takes exponentially many
queries to the oracle, we can be sure the algorithm will take more than polnomially many gates.

2. The query model of classical computing is well studied.

• In this sense it’s natural to consider the same model of computing in the quantum world.

3. It gives insight into how quantum algorithms work. Instantiating the “black box” or query Qf in terms
of quantum gates can lead to fast quantum algorithms.

• Peter Shor came up with his famous gate model algorithm for factoring by building off literature
on the query model.

Scott Aaronson has compared the query model of quantum computing to perturbation theory in quantum
mechanics6. Problems in quantum mechanics are hard to solve analytically, so we resort to perturbation
theory, which isn’t a complete solution, but tells us something about what we want to know. In the same
sense, allowing queries to an oracle hasn’t completely specified our quantum algorithm, but it’s told us
something—namely, that for certain problems, quantum computers can solve them in much fewer queries
than classical computers.

9.4 The Deustch-Jozsa Algorithm

9.4.1 Defining the Problem
Alright, let’s finally get to a query model quantum algorithm. Here’s the first one ever: the now-called
Deustch-Jozsa algorithm after the authors. Here’s the problem we want to solve:

Definition 9.5 (The Deustch-Jozsa Problem.). Let f : {0, 1} → {0, 1}. Does f(0) = f(1)?

This is often stated in a much more pedantic way for reasons I don’t understand7: “Is f constant or
balanced? By constant, we mean f(0) = f(1), and by balanced we mean f(0) ̸= f(1). This is to say in much
more words than are necessary what we have already said: does f(0) = f(1)?

Exercise 44: State the Deustch-Jozsa problem in an even more pedantic way, as follows. Determine
the value of the parity

f(0)⊕ f(1) (9.7)

where again ⊕ denotes addition modulo two. Show that if f is constant then the parity is zero, and if f is
balanced then the parity is one.

Now we get to the interesting part: solving the problem.

Exercise 45: How many classical queries (9.6) does it take to solve this problem?

That’s a pretty easy exercise. It’s two. It must be two since the values of f(0) and f(1) are completely
independent of each other. We have to ask what both values are, then compare to see if they’re the same or
different.

Exercise 46: How many quantum phase queries (9.3) does it take to solve this problem?
6See the three video lectures by Scott Aaronson at the 2018 Boulder School on Quantum Information at

https://boulderschool.yale.edu/2018/boulder-school-2018-lecture-notes.
7It’s to make the problem sound cooler, I guess. By the way, most of these query model algorithms work by writing down

some algorithm and then defining the problem based on what the algorithm does. Then you present it backwards to make it
sound more impressive in the standard mathematical way.

42

QUIC SEMINAR 9. INTRODUCTION TO THE QUERY MODEL OF QUANTUM COMPUTING 43

To steal Scott Aaronson’s joke, if you were to expect a quantum speedup, you’d probably say one! (“It’s
got to be an integer, it’s less than two, can’t be zero...”) Interestingly, unlike the classical algorithm, we don’t
learn explicitly what either of the values f(0) or f(1) are, we only learn if f(0) = f(1) or not. (Equivalently,
the parity.)

9.4.2 Solving the Problem
Now for the interesting part: the quantum algorithm that solves the DJ problem!

|0⟩ H Qf H ✌✌✌

Figure 9.1: The DJ algorithm written in the quantum circuit model. Here, Qf is a phase query.

How does this work? Let’s work through the math, which only takes a few lines. We’ll omit normalization
coefficents throughout.

|0⟩ 7−→ |0⟩+ |1⟩ (First Hadamard)

7−→ (−1)f(0)|0⟩+ (−1)f(1)|1⟩ (Phase query)

7−→ (−1)f(0)[|0⟩+ |1⟩] + (−1)f(1)[|0⟩ − |1⟩] =: |ψ⟩ (Second Hadamard).

We can write the resulting state, call it |ψ⟩ in a more insightful way to see what’s going on:

|ψ⟩ =
[
(−1)f(0) + (−1)f(1)

]
|0⟩+

[
(−1)f(0) − (−1)f(1)

]
|1⟩ (9.8)

How does this solve our problem? Consider the case where f(0) = f(1). Then, the coefficient of the |1⟩
state goes to zero and the coefficient of the |0⟩ state becomes 1 (when properly normalized)8. If f(0) ̸= f(1),
the opposite happens, and the resulting state is |1⟩. Thus, if we measure 0, we know the state must have
been |0⟩, meaning that f(0) = f(1). If we measure 1, we know the state must have been |1⟩, meaning that
f(0) ̸= f(1). Voila! One query.

9.4.3 Discussion of the DJ Algorithm
What’s the key thing happening in the DJ algorithm that allows us to solve the problem in only one query?
It’s interference, both constructive and destructive interference. (Of course superposition is at play here too,
since interference depnds on superposition.) In both cases, the state encoding the answer gets constructive
interference and the state with the wrong answer gets destructive interference. This is at the heart of all
(good) quantum algorithms. The difficulty is how to choreograph such an interference pattern when you don’t
know what the answer is a priori. That is, you don’t know what states should get constructive interference
and which states should get destructive interference.

Example 2: Simulating the DJ Algorithm with light.
Figure 9.2 shows how one could implement the DJ algorithm using light and standard optical equipment. A
beam of light is sent through a beam splitter and into the “black box,” which could be realized by a person
who knows the function values, just as the oracle does, and implements π phase shifters appropriately on
each beam. Specifically, if f(0) = 1, shift the phase of the top beam, else do nothing. Similarly for the
bottom beam with f(1). We then reflect both beamsa using mirrors to combine them at the detector. If
we measure any light, we know there must be constructive interference between the two paths, hence the
function is constant. If we measure no light, there must be destructive interference, telling us the function
is balanced.

Note that this is really a classical simulation of the DJ algorithm, since we’re not really using any
8Note that global phase doesn’t matter, so −|0⟩ and |0⟩ are really the same state as far as measurement statistics are

concerned.

43

QUIC SEMINAR 9. INTRODUCTION TO THE QUERY MODEL OF QUANTUM COMPUTING 44

Photon Source (laser) Beam Splitter

Mirror

Mirror

|0>

H

Q_f

H

Detector

Figure 9.2: A (classical) optical simulation of the DJ algorithm using standard optical equipment. Labels
below optical equipment and the black box show the corresponding component in the quantum algorithm
shown in Fig. 9.1.

quantum phenomena of the light here. It’s just a classical beam. If we wanted to make it quantum, we
could restrict to a single photon from the photon source.

aHadmard is self-inverse. What’s the inverse of a beam splitter? A mirror!

Exercise 47: You may be unsettled by the fact that the person implementing the black box has to
do things separately on each path—i.e., she’s doing two things, one on each “beam” or path. Redesign the
experiment in Fig. 9.2 so that she only has to implement one operation on one path.

44

