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Quantum Error Correction (QEC) 

Recap

Classical error correction Quantum error correction
repetition code

codewords

majority vote  
to correct error

physical bit flip 
probabilities 

110 111 

0L = |000⟩
1L = |111⟩

simple example

codewords

Xlog = X1X2X3

Zlog = Z1Z2Z3

Ylog = iXlogZlog

Logical Pauli operators

S1 = Z1Z2

S2 = Z2Z3

Stabilizers



Bosonic mode architecture 

Discrete variable Continuous variable
transmon qubits

qubit

microwave or mechanical oscillator

qubit qubit

|ψ⟩ = a0 |000⟩ + a1 |001⟩ + a2 |010⟩ + a3 |011⟩
+a4 |100⟩ + a5 |101⟩ + a6 |110⟩ + a7 |111⟩ 0
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Boson Fock 
(photon number) 

states

+a4 |4⟩ + a5 |5⟩ + a6 |6⟩ + a7 |7⟩
|ψ⟩ = a0 |0⟩ + a1 |1⟩ + a2 |2⟩ + a3 |3⟩

ψ(x)



Why bosonic codes? 
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Bosonoc QEC code words of photons in resonators 
can be transmitted as ‘flying’ photons  

for QEC local quantum communication

“Error-detected state transfer and entanglement  
in a superconducting quantum network” 

L.Bukhardt et al., arxiv:2004.06168

Descrete-variable QEC is hard!



Binomial code 

microwave resonators (harmonic oscillators) 
are empty boxes
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Boson Fock 
(photon number) 

states

H = ℏωa†a = ℏω ̂n

• simple error model: photon loss 
• Codewords with definite photon number parity (e.g. even) 
• photon loss flips the parity 
• measurement (QND) of the parity does not tell us the photon  number



Simple binomial code 

even parity

Using only 5 photon states 0-4

Logical code words

|0L⟩ =
|0⟩ + |4⟩

2

|1L⟩ = |2⟩

odd parity
Error words

a |0L⟩ = 2 |3⟩

a |1L⟩ = 2 |1⟩

Recovery after parity jump

U |3⟩ = |0L⟩

U |1⟩ = |1L⟩

time evolution of the cavity:

exact error operators:
(Kraus operators)

̂E0 = ̂I − κdt ̂n
̂E1 = κdta

first order in κdt
“no jump”

“jump”

|0⟩ + |4⟩

2
→ cos Θ

|0⟩ + |4⟩

2
+ sin(Θ)

|0⟩ − |4⟩

2

no jump evolution:

|2⟩ → |2⟩Correct errors to the  first order in κdt



Simple binomial code 

correcting dephasing

protecting against errors:

codewords:

error words:

the dephasing error does not change the photon number 

initial quantum state:

in order to correct this we perform projective 
measurement into logical basis:



Binomial code 

General case

break-even point: 
the best uncorrectable bosonic code (0,1) 

photon Fock encoding:
|ψ⟩ = α |0⟩ + β |1⟩

protecting against error set:

up to L photon losses, up to G photon gain errors, and up to D dephasing events

codewords: 

the spacing is S = L + G, maximum order N = max{L,G,2D}

the quantum error-correction criteria 
(the Knill-Laflamme conditions )

Michael, Marios H., et al. "New class of quantum error-correcting codes for a bosonic mode." Physical Review X 6.3 (2016): 031006.



Qubit QEC vs binomial codes 

Comparison amplitude damping code



Parity measurement of a photon state 

QuIC introduction

strong dispersive coupling 

Sun, Luyan, et al. "Tracking photon jumps with repeated quantum non-demolition parity measurements."  
Nature 511.7510 (2014): 444-448.  

Fock states associated with the qubit  
in the excited state acquire a phase:

~ number of photons

by waiting time we realize c-phase gate



Simple binomial code 

Experimental realization

Dispersive interaction  
between the ancilla and the oscillator:  

interaction strength 

self-Kerr coefficient 

Hu, Ling, et al. "Quantum error correction and universal gate set operation on a binomial bosonic logical qubit."  
Nature Physics 15.5 (2019): 503-508. 



Simple binomial code 

Experimental realization / measurement protocol



Simple binomial code 

Experimental realization / main results


