
QuIC Seminar 12
Shor’s Algorithm Part 1

Contents
12.1 Cryptography . 76

12.1.1 Private key cryptography . 76
12.1.2 Public key cryptography . 77

12.2 How to break public key cryptography . 80
12.2.1 RSA . 80
12.2.2 Diffie-Hellman-Merkle . 81

12.3 Reduction of factoring to period finding . 81
12.3.1 A function that’s periodic . 81
12.3.2 What does the period tell us? . 82
12.3.3 Euclid’s algorithm . 83

12.4 Summary . 84

I know what you’re thinking. “Alright, alright, enough of these artificial black box “query model”
algorithms. What’s the big idea here? Why would I care if the function was constant or balanced, Deustch?
Which evil villain is conjuring up all these secret strings for us to figure out quickly, Berstein, Vazirani, and
Simon? And plus, we never even looked at how to implement the black boxes!”

These are fair points, as we’ve discussed. In no time at all, however, Peter Shor put all of them to rest
in triumphant fashion with the publication Polynomial time algorithms for prime factorization and discrete
logarithms on a quantum computer. No more can we complain about artificial problems, unless you think
keeping your credit card information secure over internet transactions is artificial. The result by Shor was
so big that people started switching fields, computer scientists’ jaws hit the floor, physicists went dancing,
mathematicians did whatever mathematicians do to celebrate1. The paper has nearly ten thousand citations
and is one of the monuments of modern science. It’s perhaps the most academically rich, beautiful result
in history, tying together number theory and cryptography and computational complexity and quantum
physics. Let’s understand it.

But why did we still need to care about those darn artificial problems? The answer is that Shor’s
algorithm, at least the quantum part, is extremely similar to Simon’s algorithm. Simon’s algorithm built
off Bernstein and Vazirani’s algorithm, and their algorithm built of Deustch and Josza’s algorithm. Our
understanding of these is a huge step towards understanding Shor’s algorithm.

That being said, there are a lot of intricacies to the algorithm, and it will take us a few seminars to
cover in satisfactory detail. This seminar will be mostly setting the stage. To rid all complaints of artificial

1Okay, perhaps I’m slightly exaggerating. We could also say that engineers started weeping at the idea of building such a
device.

75

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 76

problems, we’ll first spend some time discussing public key cryptography and how factoring can break the
RSA cryptosystem. Then we’ll discuss some group theory and show how factoring can be reduced to period
finding. This will set the stage for the quantum part of Shor’s algorithm, which computes the period of a
certain function, in the next seminar(s).

12.1 Cryptography

Cryptography is the art (science) of private communication. There’s many examples where one party, Alice,
wants to communicate with another, Bob, but she’s worried some eavesdropper, Eve, could intercept the
message. For example, Alice and Bob could be generals in a war, and Eve could be on the opposing forces.
Or, Alice could be an online shopper trying to communicate her credit card information to the store, Bob,
in the presence of an online hacker, Eve.

12.1.1 Private key cryptography
One way to achieve this is to encode the message with some private key that Alice and Bob know but Eve
doesn’t. This is formally known as private key cryptography. Assuming Eve has not gained knowledge of the
private key, these systems can range from impossible to break to extremely simple to break, all depending
on how the message is encrypted and what the private key is.

We’ll proceed with a series of examples ranging from easy to impossible to break. In these examples,
we’ll take our message to be a short phrase, for simplicity “QuIC.” Each letter will be represented by it’s
numeric position in the alphabet, starting with 1 for A, 2 for B, and so on. Capitalization won’t matter.
Since I still hardly know the alphabet, I’ve taken the time to enumerate this in the table below.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Table 12.1: Reference table for encoding letters as numbers and vice-versa.

The message “QuIC” thus becomes (17, 21, 9, 3).

Example 1: The Caeser cipher.
The Caesar cipher is an example of a private key cryptosystem that’s really easy to break. It works as
follows.

Alice and Bob pick a key that’s a single number—1 through 26—as the private key. Each number in
the message is then shifted by this amount (modulo 26). As an example, let’s say the key is k = 7. The
message “QuIC,” which is (17, 21, 9, 3), then becomes (24, 2, 16, 10), which is “XBPJ.” Since Bob knows
the key, he simply subtracts this off when he gets the encrypted message to read the original message.

Suppose Eve intercepted the encrypted message without the key. She would read only “XBPJ.” This
is nonsense! What is that, a radio station? How could Eve possibly make sense of this? We can be sure
this message is unbreakable, right?

The issue here is that there’s only 26 possible keys. Eve could simply, and very quickly, try every
single one of them until the letters started forming sensible wordsa. How would she know it was a Caeser
cipher? She could have guessed it or had gained some knowledge of it somehow.

aNot that QuIC is a sensible word or anything, but we’re all in the seminar, so we know what it means.

The Caeser cipher is thus not a very secure private key cryptosystem. It’s a good illustration of how
private key cryptography works, in particular the encryption and decryption schemes, and the importance
of the key used.

Exercise 80: Using a Caeser cipher with key k = −1, encode the message “IBM.” Have you ever read
the Arthur C. Clarke Space Odyssey series or seen the Stanley Kubrick film 2001: A Space Odyssey? If so,
you should recognize the encrypted message as one of the main characters. Both Clarke and Kubrick denied
any meaning behind this coincident Caesar cipher, but some think there is given the plot of the story/film.

76

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 77

Example 2: The Enigma machine.
In World War II, Germany used a device called The Enigma machine to encrypt all of their messages so
the Allied forces could not intelligibly intercept them.

An Enigma operator would type each letter of a message into the machine. For each letter, Enigma
would return a pseudo-random substitution for this letter, which would be the encryption. This process
would continue for the entire message, then the encrypted message would be sent, typically over radio in
Morse code.

The message would be decrypted by having the receiver type the encrypted message into another
Engima machine with identical settings. Thus, unless the Allied Forces knew the exact inner workings of
Enigma—which had settings that changed daily—they could not crack the messages.

But they did end up cracking the messages. The way this was accomplished was by noting patterns in
messages resulting from poor operation. I don’t know if this is historically accurate, but according to the
movie The Imitation Game it’s because each message contained the same text, something like “heil Hitler.”
By identifying this message, the key became much easier to break. This realization, and cryptography in
general, played a huge role in the outcome of WWII.

The last example of a private key cryptosystem—I think we get the idea by now—that I’ll mention is the
one-time pad, which is truly unbreakable. It’s related to the previous examples in that each letter is shifted,
but each letter is shifted by a different amount, and the amount is truly random. Given these assumptions,
one can show that Eve cannot decipher the message without knowing the key, as long as the key is only used
once. (Hence the one-time pad. Why pad? It’s a name for “what the key is written on,” like a notepad.) It’s
not hard to see why this is true—each letter is shifted by a random amount, so the message is thoroughly
jumbled with no correlation or way of determining any letter.

12.1.2 Public key cryptography
Private key cryptography is all well and good and has interesting historical examples, but there’s a serious
impediment in practice: Alice and Bob have to somehow exchange a key without anyone intercepting it.
Well, the problem of private communication was the original problem we started with! If Alice is shopping
online, it’s extraordinarily impractical for her to try and exchange a private key with the store owner, Bob.

The fix to this is to publish the key to the world! Well, at least part of the key. This is how public key
cryptography works. It sounds like it couldn’t be possible when you first hear it or imagine it. The key idea2

is only exchanging half of the key and relying on a process that’s easy to do one way but extremely hard to
do in the reverse way. The best way I know how to illustrate these currently vague points is by example.
We’ll use the RSA public key cryptosystem for this example, in which Alice generates a key as follows:

RSA key generation

1. Select two large3 prime numbers p and q.

2. Compute the product n := pq.
Note that this is efficient—multiplying two numbers together is easy (computationally speaking).

3. Select at random a small odd integer e that is relatively prime to

ϕ(pq) ≡ ϕ(n) := (p− 1)(q − 1). (12.1)

The function ϕ is known as Euler’s totient function or Euler’s phi function.

4. Compute d, the multiplicative inverse of e module ϕ(n).

5. The public key is then the tuple P := (e, n). The secret key is the tuple S := (d, n).
2No pun intended.
3How large is large? This will be clarified shortly.

77

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 78

That’s all there is to it! Before we see an example, note the following: the public key is the one that
anyone can have access to. Bob sees it and uses it to encrypt his message, which we’ll discuss shortly. But
Eve can also see it, anyone can see it—and they still can’t break the cryptosystem within any reasonable
amount of time. We’ll see why this is shortly, but first let’s practice generating RSA keys with an example.

Example 3: Generating an RSA key.
We’ll proceed with the above steps giving a small numeric value to p, q and e to see how the process works.

Let’s say p = 5 and q = 11.
This implies that n := pq = 55.
This implies that ϕ(n) = ϕ(pq) = (p− 1)(q − 1) = (4)(10) = 40. Let’s pick e = 3, for example.
The multiplicative inverse of e module ϕ(n) is e = 27, since de = 81 = 1 mod 40.
Thus we have the public key P := (e, n) = (3, 55) and the secret key S := (d, n) = (27, 55).

Exercise 81: Show that the public key for RSA with p = 3, q = 11, and e = 3 is P = (3, 33), and the
secret key is S = (7, 33). List out all steps as above.

These numbers are small—consisting of only a few bits in binary representation—and not secure! The
current standard is using a number n which has 2048 bits (RSA-2048). More bits corresponds to increased
difficulty in factoring the integer n, and we’ll see shortly that factoring can break RSA. First, let’s see how
Bob uses the public key to encrypt his message.

Let m be a numerical value representing a character in Bob’s message. Given P = (e, n), this value is
encoded via

E(m) := me mod n. (12.2)

This quantity can be efficiently computed by a trick known as repeated squaring. This trick will actually be
crucial in Shor’s algorithm for a different but similar reason—we’ll leave the explanation of how repeated
squaring works for when we come to it later. It’s not critical to understand now. What is important is that
E(m) can be computed efficiently, and everything in RSA key generation can be done efficiently.

Example 4: Encrypting with an RSA public key.
Given the public RSA key P = (3, 33), let’s encrypt each character in the message “QuIC” which we
represent as (17, 21, 9, 3).

The first character becomes E(17) = 173 mod 33 = 29.
The second character becomes E(21) = 213 mod 33 = 22.
The third character becomes E(9) = 93 mod 33 = 3.
The fourth character becomes E(3) = 33 mod 33 = 27.
Thus, the encrypted message is (18, 22, 3, 27) or “RVCA” (taking each number modulo 26).

Exercise 82: Encode the message “RSA” using the RSA public key P = (3, 55).

Now that Bob has encrypted his message, he can send it to Alice. It’s ok if this message get’s intercepted
by Eve—she still won’t be able to decipher it because she doesn’t have the secret key—only Alice does. Once
the message reaches Alice, she can decipher it using her secret key S := (d, n) which only she knows. Let’s
see how this works.

We’ll first proceed by example to see the magic of RSA decryption. (Then we’ll prove some theorems to
understand the magic.) We know Bob’s encrypted message was (29, 22, 3, 27) and his original message was
(17, 21, 9, 3). Consider what happens when Alice does the decoding

D(E(m)) = E(m)d mod n (12.3)

with her secret key S = (d, n) = (7, 33).

• The first encrypted number gets mapped to D(29) := 297 mod 33 = 17.
This is the first number in Bob’s original message! So far so good for the proposed decryption

scheme (12.3).

78

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 79

• The second encrypted number gets mapped to D(22) = 227 mod 33 = 22.
Two for two!

• The third encrypted number gets mapped to D(3) = 37 mod 33 = 9.

• The fourth encrypted number gets mapped to D(27) = 277 mod 33 = 3.

Thus the original message (17, 22, 9, 3), or “QuIC,” is recovered! This is great news, but why does it
work? Will it always work? The following theorem answers these questions. First we’ll formally define the
encryption and decryption schemes.

Definition 12.1 (RSA Encryption and Decryption). Let P := (e, n) and S := (d, n) be public and secret
RSA keys, respectively. A message m is encrypted using the public key P as

E(m) := me mod n, (12.4)

and an encrypted message E(m) is decrypted using the secret key S as

D(E(m)) = E(m)d mod n. (12.5)

Now we prove that the decryption always recovers the original message. The proof uses some standard
theorems from number theory which we will state and use without proof, in particular Euler’s theorem,
which states that, if a and n are relatively prime positive integers, then

aϕ(n) = 1 mod n (Euler’s theorem) (12.6)

where ϕ is the same Euler totient function in (12.1). (Integers a and n are relatively prime if their greatest
common divisor is one. For example, 6 and 25 are relatively prime, but 6 and 24 are not.)

Theorem 12.1 (RSA decryption recovers the original message). For any RSA encoded message E(m) as
in Definition 12.1, we have

D(E(m)) = m. (12.7)

Proof. Consider the case when m is relatively prime to n. Then,

D(E(m)) := E(m)d mod n

= (me)d mod n

= med mod n.

Now, by construction of e and d, we know that d = e−1 modulo ϕ(n). By definition, this means that
ed = 1 + kϕ(n) for some integer k. Thus, we have that

D(E(m)) = m1+kϕ(n) mod n

= m · (mϕ(n))k mod n

= m · (1) mod n

= m.

In the second to last step we used Euler’s theorem (12.6) (we assumed m and n were relatively prime), and
in the last step we used that m < n to get rid of the modulo n.

This proves the theorem when m and n are relatively prime. The case where m and n are not relatively
prime is left as a (not that important) exercise.

79

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 80

Exercise 83: Complete the proof of Theorem 12.1 by considering the case when m and n are not
relatively prime.

At this point, we’ve proposed a public key cryptosystem known as RSA, detailed how to generate public
and secret keys, how to encrypt messages, how to decrypt messages, and proved decryption recovers the
original message. What’s left is to consider how RSA could be broken and determine how difficult such a
task would be. This is the subject of the next section.

12.2 How to break public key cryptography

Public key cryptography, in principle, is able to be cracked. The reason we say “in principle” is that, for a
good public key cryptosystem, it takes a very long time to crack, even if the method is known for how to do
this. For most of the following discussion, we’ll focus on cracking RSA, but at the end we’ll mention another
protocol, the Diffie-Hellman-Merkle key exchange.

12.2.1 RSA
Recall that the RSA public key contains the integer n. Suppose we were able to factor this integer into
its two primes p and q. This would then give us the ability to construct the secret key S and decrypt the
message in the same way that Alice does. Thus, if we could factor the integer n (quickly), we could break
RSA.

In an above example, we had n = 33. One can factor this instantaneously to get p = 3 and q = 11,
then generate the secret key. The key property that makes RSA safe is that factoring n gets hard when n
contains many digits. For example, imagine if someone asked you to factor the RSA-2048 number4

n = 2519590847565789349402718324004839857142928212620403202777713783604366202070

7595556264018525880784406918290641249515082189298559149176184502808489120072

8449926873928072877767359714183472702618963750149718246911650776133798590957

0009733045974880842840179742910064245869181719511874612151517265463228221686

9987549182422433637259085141865462043576798423387184774447920739934236584823

8242811981638150106748104516603773060562016196762561338441436038339044149526

3443219011465754445417842402092461651572335077870774981712577246796292638635

6373289912154831438167899885040445364023527381951378636564391212010397122822

120720357.

This is much more difficult. The reason it becomes very difficult very quickly is that, for all known classical
factoring algorithms, the runtime scales exponentially in the number of bits. It could be that there exists a
fast classical algorithm for factoring, but no one has been able to discover one in over three decades of trying
to break RSA.

There is another means of breaking RSA which involves finding the period of a special function known
as the modular exponential function. This is what the quantum part of Shor’s algorithm does. The purpose
of the next section is to relate the problem of factoring to this problem of period finding.

4I got this number from https://en.wikipedia.org/wiki/RSA_numbers, which is an interesting read about a contest for
factoring such numbers and the outcomes of the contest.

80

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 81

12.2.2 Diffie-Hellman-Merkle
Before this, we’ll mention one other important fact extremely briefly—another popular public key cryptosys-
tem known as Diffie-Hellman5 can be broken by computing a discrete logarithm. As suggest in the title of
his paper, Peter Shor also devised a quantum algorithm for this. Not one, but two! of the biggest public
key cryptosystems hacked with a (hypothetical) quantum computer.

This is all that I’ll say about Diffie-Hellman and discrete logs—when I refer to Shor’s algorithm, I mean
the one for factoring. (Well, period-finding, really, as we’ll soon see.)

12.3 Reduction of factoring to period finding

This discussion involves a bit of group theory and number theory—physicists be warned. At face value, the
factoring problem, formally defined below, appears to have nothing at all to do with period finding.

Definition 12.2 (Factoring problem). Let p and q be prime numbers. The factoring problem is: Given
n = pq, determine p and q.

12.3.1 A function that’s periodic
Let’s see how we can relate the factoring problem to period finding. Let (Zn,×) denote the multiplicative
group of integers modulo n. For simplicity of notation, we’ll just denote this group as Zn. This group
consists of integers that are relatively prime to n.

Example 5: The group Z15.
If you’re not familiar with Zn, this example should help. Let’s enumerate the elements of Z15. The
candidates are 1, 2, 3, ..., 15. Certainly 1 ∈ Z15 since 1 is relatively prime to any integer. Also 2 ∈ Z15

since 2 and 15 are relatively prime. (In fact, any prime is relatively prime to any other integer.) However,
3 /∈ Z15 since gcd(3, 15) = 3, thus they are not relatively prime. One can continue in this manner to show
that

Z15 = ({1, 2, 4, 7, 8, 11, 13, 14},×). (12.8)

Exercise 84: Prove that (12.8) is a group.

Exercise 85: Let p be prime. Show that the elements of Zp are all integers modulo p.
How many elements are going to be in Zn? The answer is known from number theory for the case n = pq.

Theorem 12.2 (Cardinality of Zpq). Let n = pq with p and q prime. Then, |Zn| = ϕ(n) = (p− 1)(q− 1).

Exercise 86: Count the number of elements in Z15 from (12.8). Show this number is equal to ϕ(15).

Exercise 87: List the elements of the group Z21 and show that there are exactly ϕ(21) = 12 of them.
We’ll now define the function whose period will allow us to factor an integer n.

Definition 12.3 (Modular exponential function). Let n = pq with p and q prime, and let x ∈ Zn. The
modular exponential function fx : Z+ → Zn is defined by

fx(r) := xr mod n. (12.9)

We implicitly claimed that this function is periodic above. Why is this the case? There’s (at least) two
ways to see this. The first relies on the fact that Zn is finite and the following theorem from group theory:

5More properly Diffie-Hellman-Merkle, but you’ll often see just Diffie-Hellman.

81

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 82

Theorem 12.3. Let G be a finite group. Then, for any g ∈ G, we have g|G| = 1G.

Proof. Consider the subgroup ⟨g⟩ generated by g. By Lagrange’s theorem, |⟨g⟩| divides |G|, hence |g| ≤ |G|.
By definition of order, g|g| = 1G, so it follows that g|G| = 1G.

Thus, the modular exponential function satisfies
fx(r + |G|) = xrx|G| mod n = xr mod n = fx(r). (12.10)

Here, G = Zn, so we know by Theorem 12.2 that |G| = |Zn| = ϕ(n).
The second way to see that f is periodic actually uses the above fact directly by means of Euler’s

Theorem (12.6). Since x ∈ Zn, we know that x and n are relatively prime, so this theorem applies. In either
case, we have shown the following important result:

Theorem 12.4 (The modular exponential function is periodic). Let fx be as in Definition 12.3. Then,

fx(r + ϕ(n)) = fx(r). (12.11)

Exercise 88: The group Z6 consists of the elements {1, 5} so that |Z6| = 2. Show that 1|Z2| = 1 and
5|Z2| = 1 modulo 6. This is an example of Theorem 12.3.

Exercise 89: Do the same exercise as above but start with Z10.

12.3.2 What does the period tell us?
At this point, you may think I’ve left the reservation like a proper theoretical mathematician. The whole
point was to somehow relate factoring to period finding. We now have this strange modular exponential
function, which we’ve shown to be periodic, but what the heck does this have to do with factoring?

The relationship is as follows. Suppose we determine ϕ(n) by determining the period of fx. How does
this help us factor n? We know that n = pq and

ϕ(n) = (p− 1)(q − 1) = pq − p− q + 1 = n− p− q + 1. (12.12)
Recall that we know n—Alice published this to the world with her public key P = (e, n)! This gives us one
equation

p+ q = n− ϕ(n) + 1 (12.13)
relating p and q to known quantities. This isn’t enough to determine p and q individually, however—we need
one more piece of information. What could this be? Well, we also know

pq = n. (12.14)
This will work! Letting m := n− ϕ(n)− 1, we can thus write

p2 −mp+ n = 0, (12.15)
which can be solved for with your favorite method for solving quadratic equations—completing the square,
quadratic formula, etc. In any event, the answer is

p =
m

2
− 1

2

√
m2 − 4n (12.16)

q = m− p. (12.17)
So there it is—we’ve just determined p and q (i.e., factored n) by determining the period of the modular

exponential function. How can we determine the period, you ask? Enter the quantum part of Shor’s
algorithm6!

There’s one important subtlety left, however. Although (12.11) is a true statement, the period of the
modular exponential function can be smaller than ϕ(n). Consider the following example.

6You may have noticed this seminar has been quite classical up to this point.

82

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 83

Example 6: The period of fx can be smaller than ϕ(n).
In an earlier example, we considered the group Z15. It’s easy to compute that ϕ(15) = 8, so we know that
fx(r + 8) = fx(r). However, the fundamental period of fx in this case is smaller than 8. It’s 4, as we’ll
now see.

The elements of the group are Z15 = {1, 2, 4, 7, 8, 11, 13, 14} as previously shown. You’re asked to verify
in the exercise below that g4 mod 15 = 1 for each g ∈ Z15. This shows that the fundamental period of fx
is 4, as claimed. (Technically, one must check that the period isn’t 2 or 3 to show 4 is the fundamental
period, but these are quite simple checks.)

Exercise 90: For each element g in Z15 = {1, 2, 4, 7, 8, 11, 13, 14}, show that g4 mod 15 = 1. A
(classical) computer may be useful.

Let s denote the fundamental period of fx. As we have shown above, s ≤ ϕ(n), but certainly s evenly
divides ϕ(n) in light of (12.11). That is,

s | ϕ(n) (12.18)
This is a key fact that will let us determine the factors p and q as above.

To enumerate this process, suppose we learn that the period of fx is s. This is equivalent to say that

xs = 1 mod n. (12.19)

Now, suppose s is even. One may expect that this happens roughly half the time7. Since s is even, we may
factor the above equation as

(xs/2 − 1)(xs/2 + 1) = 0 mod n. (12.20)
This is equivalent to saying

(xs/2 − 1)(xs/2 + 1) = tn (12.21)
for some integer t.

For clarity, suppose t = 1 for the moment. What does this tell us about the quantities (xs/2 − 1) and
(xs/2 +1)? Well, they’re precisely p and q! This is because this equation is of the form n = something times
something else, and we know n = pq. So, this is the only possibility.

Now suppose t > 1. The idea is similar, but now p could be a factor of (xs/2 − 1) or of (xs/2 + 1). That
is, if t = ab, then this equation tells us something like

(ap)(bq) = tn. (12.22)

Of course we don’t know what t is going to be. Regardless, we can still say in any case that, up to relabeling
p and q,

p = gcd((xs/2 + 1), n) (12.23)

q = gcd((xs/2 − 1), n). (12.24)

Thus, finding the period s of fx allows us to determine p and q, even when s < ϕ(n). Thus, we have shown
that factoring reduces to finding the period of the modular exponential function fx.

12.3.3 Euclid’s algorithm
There’s one more detail to cover. Above we just said “we can compute the greatest common divisor to
figure out p and q.” While this is true, we’re talking about algorithms here—how do we know we can do it
efficiently? Do we need to invent some fast quantum algorithm to do this? Fortunately, the answer is no.
Computing the greatest common divisor has an efficient algorithm that was known by Euclid in c. 300 B.C.

Euclid’s algorithm (also known as the Euclidean algorithm) is best explained in pseudo-code. Actually,
it’s so simple I’ll include actual Python code. Let a and b be positive integers. The g.c.d. can be computed
by the following function:

7There’s a precise theorem here which I won’t get into. Ok, fine, I’ll get into the statement, but not the proof. The statement
of the theorem is as follows. Given any n, if x is randomly chosen from Zn, then with probability at least 3/8, (1) s is even and
(2) neither (ss/2 − 1) nor (ss/2 + 1) is a multiple of n.

83

QUIC SEMINAR 12. SHOR’S ALGORITHM PART 1 84

de f gcd (a , b) :
i f b == 0 :

re turn a
return gcd (b , a % b)

(Recall that the % operator in Python is the modulus operator.)
We won’t go into why this algorithm works or derive it’s runtime, but we will state that (1) it works

and (2) the runtime scales as O(log(ab)). That is, linear in the number of bits of a and b. This is certainly
efficient, so we can be safe in saying that “we can just compute the greatest common divisor to figure out p
and q.”

12.4 Summary

As anticipated, this turned out to be a long seminar. There’s a lot of intricate details in Shor’s algorithm,
as we have seen, and these take some time to explain. And we haven’t even made it to the quantum part!
This was all just setting the stage. Don’t worry, though—the quantum part is, in my opinion, simpler than
the above exposition.

Here’s a recap of what we know so far:

• Factoring is a useful, interesting problem because of the RSA cryptosystem.

• The modular exponentiation function fx is periodic.

• Determining the period of fx allows us to factor n into p and q.

We don’t know how we can determine the period of fx yet, but we’ll figure out how we can do this
(efficiently) with a quantum computer in the next seminar(s).

Exercise 91: Write a program to generate RSA keys for an input number of bits, e.g. RSA-128,
RSA-256, etc.

84

