
QuIC Seminar 13
Shor’s Algorithm Part 2: The Quantum
Fourier Transform

Contents
13.1 Fourier transforms . 85

13.1.1 Asymptotic scalings . 88
13.2 The quantum Fourier Transform . 88

13.2.1 Seeing structure in a small example . 89
13.2.2 The general recursive pattern . 90

13.3 Properties of the QFT . 92

In the first seminar on Shor’s algorithm, we explained how the problem of factoring n = pq (where p, q
are prime) can be reduced to finding the period of the modular exponential function

fx(r) := xr mod n (13.1)
where f : Z+ → Zn and x ∈ Zn. (We also spent some time on cryptography, but this was mainly to motivate
why factoring is an interesting problem.)

In this seminar, we’ll explain a key subroutine in Shor’s algorithm—the Quantum Fourier Transform
(QFT). The QFT is used in many other algorithms—we’ve already used it in quantum phase estimation—
and is one of the most important subroutines in all of quantum computing. Mastering the QFT is critical.

In a more general sense than quantum computing, the QFT is interesting because it’s, well, a Fourier
transform—potentially the most useful transformation in applied mathematics. It’s uses range from differen-
tial equations to signal processing to harmonic analysis and beyond. After my own brief foray into quantum
field theory (another QFT), I’m also willing to say the Fourier transform is essentially everything there.

The history of algorithms for Fourier transforms is highly interesting as well, with the Fast Fourier
Transform (FFT) providing a significant speedup over the “classic” FT algorithm. We’ll see how the QFT
takes the cake in this seminar—albeit under a crucially important caveat.

Question: Why would something like a Fourier transform be needed in Shor’s algorithm? What’s the
intuition?

Answer: Shor’s algorithm for factoring is all about period-finding, which is what Fourier transforms are
all about! A FT maps from the time domain to the frequency (Fourier) domain. Frequency is exactly what
we want to know about this modular exponential function guy (13.1).

13.1 Fourier transforms

Let’s start with the definition of a classical Fourier transform, first in the continuous case and then in the
discrete case. This will motivate the definition of the QFT and help us understand what’s going on.

85

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 86

Definition 13.1 (Continuous Fourier transform). Let f(t) be a real-valued function of “time” ta. Then,
the Fourier transform of f is a function of “frequency” ω defined by

F{f(t)}(ω) ≡ f̂(ω) :=

∫ ∞

−∞
f(t)e−2πiωt dt (13.2)

The FT of a function f is defined whenever this integral converges for all ω. The inverse Fourier
transform is defined by

f(t) ≡ F−1{f̂(ω)}(t) := 1

2π

∫ ∞

−∞
f̂(ω)e2πiωt dω (13.3)

aThe function can also be complex-valued, but intuition is better in the real case with time and frequency, so we’ll stick
to this without any issues.

� Caution! Almost everyone has their own unique definition of the Fourier transform. They’re all
essentially the same, but it varies where the constants go and the scaling in the exponential and even which
is the forward/reverse transform. The standard definition of the QFT, which we’ll shortly see, actually
corresponds to the inverse FT1!

Exercise 92: Verify that F−1{F{f(t)}} = f(t) for all f(t).
There’s a bunch of examples you usually do with the FT, such as computing it for sine/cosine and getting

a Dirac-delta function, showing the FT of a Gaussian is a Gaussion, etc. We won’t be concerned with these
examples here, but rather the discrete version of this continuous transformation.

The discrete Fourier transform (DFT) arises when f is not a continuous “signal,” but rather a discrete
one. Here, we can represent f by a vector of N discrete values where it is defined. In particular, let

f := (f0, f1, ..., fN−1). (13.4)

The DFT can then be obtained from (13.2) by using the trapezoidal rule on the integral. The result, which
we’ll just define below, is the DFT. Here, we’ll say the values fi are complex to anticipate the definition of
the QFT.

Definition 13.2 (Discrete Fourier transform). Let f ∈ CN . The discrete Fourier transform of f is a
vector f̂ ∈ CN whose kth element is defined by

f̂k :=
1√
N

N−1∑

j=0

ωkjfj (13.5)

where
ω := e2πi/N (13.6)

is the Nth root of unity.

The entire action of the FT on the vector f can be described by a matrix transformation. (Equation (13.5)
above is really the equation for the kth component in a matrix-vector multiplication.) We can see from (13.5)
that this matrix is

Ω :=
1√
N




1 1 1 · · · 1
1 ω ω2 · · · ωN

1 ω2 ω4 · · · ω2N

...
...

... · · ·
...

1 ωN ω2N · · · ωN2




(13.7)

1I went to a talk by Peter Shor at Los Alamos National Lab where he said something like, “I got rid of the minus sign (in
the forward QFT definition) because it was easier to think about without the minus sign. This is confusing now, and I learned
from this that you should always follow the standard convention!” I don’t think this was recorded anywhere, but if I ever find
it I’ll link it here. This was the gist of Peter’s point, though.

86

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 87

You can convince yourself this is true by writing out the action of the DFT matrix Ω on the vector f
and examining the kth component. In fact, this is a good exercise:

Exercise 93: Perform the matrix-vector multiplication Ωf and inspect the kth component. Verify this
is equal to the kth component in (13.5).

Exercise 94: Write out the DFT matrix (13.7) for N = 2. Does this look like a quantum gate?

Exercise 95: Write out the DFT matrix (13.7) for N = 4.

As you can see, this matrix has a lot of structure. This structure is exploited in deriving the quantum
Fourier transform which implements this matrix, which we’ll see below.

Hold the phone! Re-read that last sentence! If the quantum Fourier transform is going to implement this
matrix, we better verify that it’s unitary!

Theorem 13.1. The DFT matrix Ω in (13.7) is unitary.

Proof. There’s multiple ways to show this. One way is to prove that the columns of Ω are orthonormal.
Let Ωj and Ωk denote the jth and kth columns of Ω, respectively. Then,

Ωj =
1√
N

[
1,ωj ,ω2j , ...,ωNj

]T

Ωk =
1√
N

[
1,ωk,ω2k, ...,ωNk

]T
.

The inner product is thus

Ω†
jΩk =

1

N

N−1∑

i=0

ωi(k−j). (13.8)

If k = j, we see immediately that Ω†
kΩk = 1, which proves the normalization.

Suppose now k ̸= j. We can use the geometric series formula to write

Ω†
jΩk =

1− ωN(k−j)

1− ωk−j
(13.9)

Since k ̸= j, we have ωN(k−j) = e2πi(k−j) = 1. (Recall the definition of ω and Euler’s identity e2πi = 1.)
Another way to prove this is to construct the inverse

Ω† =
1√
N




1 1 1 · · · 1
1 ω̄ ω̄2 · · · ω̄N

1 ω̄2 ω̄4 · · · ω̄2N

...
...

... · · ·
...

1 ω̄N ω̄2N · · · ω̄N2




(13.10)

where ω̄ = e−2πi/N is the complex conjugate of ω.

Exercise 96: Verify that Ω†Ω = IN and ΩΩ† = IN .

87

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 88

13.1.1 Asymptotic scalings
We’re talking about algorithms, after all, so we care about how fast these transformations can be imple-
mented. We’re going to do them on a computer, where everything is discrete, so we’re concerned with the
DFT. The first guess is that the runtime of the DFT goes by N2, since this is the number of elements in the
matrix Ω. (And, roughly the number of floating point operations (FLOPs) needed to do the matrix-vector
multiplication.) This is the runtime of the “basic” DFT algorithm.

There’s a faster DFT algorithm, known as the fast Fourier transform (FFT). The FFT algorithm exploits
the structure of the matrix Ω to get the scaling down to O(N logN), a huge improvement! The details of
how this works are quite similar to how the QFT works. In the future, I may include a description of the
FFT algorithm, but for now we’ll see how the matrix factorization works in the QFT.

Impressed by the FFT? Wait until you see the runtime of the QFT:

O(log(N)2) (scaling of the QFT) (13.11)

An exponential improvement! We’ll prove this asymptotic scaling when we build up the QFT in the next
section, showing that the number of gates needed is O(n2) where n = log(N) is the number of qubits. For a
summary, we present the scalings of each algorithm discussed in this section in the table below.

Algorithm Scaling
DFT O(N ·N)
FFT O(N · log(N))
QFT O(log(N) · log(N))

Table 13.1: Asymptotic scalings of three algorithms for the discrete Fourier transform, written stylistically to
see the improvements. The approximate quantum Fourier transform (AQFT) achieves O(log(N) log log(N))
scaling. We can cover this in a future seminar.

13.2 The quantum Fourier Transform

All of the preface for the quantum Fourier transform (QFT) was built up in the previous section. The
definition of the QFT is identical to the DFT, but stated in slightly different notation. We include these
definitions for completeness, but remark again the QFT is exactly the same transformation of the DFT.

Definition 13.3 (Quantum Fourier transformation). The Quantum Fourier transformation is a
basis transformation described by the following unitary evolution. Let N = 2n and |k⟩, |j⟩ denote
computational basis vectors. Then,

|k⟩ QFT7−−−→ 1√
2n

2n−1∑

k=0

ωjk|j⟩ (13.12)

where
ω := e2πi/2

n

(13.13)

is the Nth root of unity. We may write QFTN to denote the dimension.

The action of the QFT on an arbitrary quantum state is obtained by using linearity. The result is stated
below, and the proof is left as an exercise.

Theorem 13.2 (Quantum Fourier transformation on an arbitrary state). Let

|ψ⟩ =
∑

k

αk|k⟩ (13.14)

88

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 89

be a quantum state. Then,
QFT|ψ⟩ =

∑

k

βk|k⟩ (13.15)

where the coefficients are given by
βk :=

1√
2n

∑

j

ωjkαk. (13.16)

Exercise 97: Proof Theorem 13.2 by using Definition 13.3 and linearity.

If you were doing all the exercises, you’d agree that

QFT2 =
1√
2

[
1 1
1 −1

]
=: H (13.17)

where H is the fan favorite Hadamard gate. Additionally, you would agree that

QFT4 =
1

2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 , (13.18)

although maybe you didn’t color the matrix elements this way. (If you didn’t do these exercises, do them
now to convince yourself of these facts.)

13.2.1 Seeing structure in a small example
Why color the matrix elements this way? Watch what happens when we swap the inner columns of the
QFT4 matrix, keeping the colors the same for clarity:

]QFT4 =
1

2




1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i


 , (13.19)

Do you see any structure here? Any block-diagonal structure? Let’s color the matrix elements in blocks for
clarity:

]QFT4 =
1

2




1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i


 , (13.20)

The top-left block is the Hadamard matrix, as is the bottom-left block. The top-right and bottom-right
blocks look are related by a minus sign, and they can be written SH where S is the phase gate

S :=

[
1 0
0 i

]
. (13.21)

Thus the matrix can be written in terms of blocks as

]QFT4 =
1√
2

[
H SH
H −SH

]
(13.22)

This “modified QFT matrix” has a lot of structure—in particular, tensor product structure. I claim that
this matrix can be factorized as follows:

]QFT4 = (H ⊗ I)(Π0 ⊗ I +Π1 ⊗ S)(I ⊗H). (13.23)

89

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 90

Recall the notation for projectors: Π0 := |0⟩⟨0| and similarly or Π1.

Exercise 98: Prove (13.23) by expanding the RHS and comparing it to (13.20).

Question: Looking at (13.23), what is a quantum circuit that implements the QFT on two qubits?
Answer: You just have to look at the equation and do what it says. Remember, though, that the first

gate in the quantum circuit is the last gate in the equation. (And the rest continue in reverse order.) The
circuit is shown in Figure 13.3 below.

• H

H S

Figure 13.1: Quantum circuit for the]QFT4 matrix (13.20).

Recall that this is the modified QFT4 gate—it has the order of the inner columns swapped. How can we
get the actual QFT4? Just swap the qubits! This is shown in the circuit in Figure 13.2 below.

• H ×

H S ×

Figure 13.2: Quantum circuit for the QFT4 matrix.

Exercise 99: Prove that swapping the qubits in Figure (13.2) is equivalent to swapping the inner
columns of the]QFT4 matrix to regain the original QFT4 matrix.

Finally, we note that the SWAP gate doesn’t need to be physically implemented here. (It’s extremely rare
you ever need to do a SWAP gate in practice unless you want to do a two-qubit gate between unconnected
qubits—more on this to come later.) We can always “untangle” the qubit wires (i.e., relabel the qubits) to
get rid of the SWAP gate. In our case, this amounts to swapping the top and bottom qubit wires, which
results in the circuit shown in Figure 13.3 below.

H S

• H

Figure 13.3: Quantum circuit for the QFT4 matrix without a SWAP gate.

13.2.2 The general recursive pattern
The structure revealed in the QFT4 case is enlightening. Since we know that the Hadamard gate is the QFT
on one qubit (13.17), we can write

]QFT4 =

[
QFT2 S QFT2

QFT2 −S QFT2

]
(13.24)

In general, it turns out that there is a recursive pattern:

]QFTN =

[
QFTN/2 AN/2 QFTN/2

QFTN/2 −AN/2 QFTN/2

]
(13.25)

This recursive relationship leads directly to the O(log2 N) scaling.

90

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 91

What is this AN/2 matrix? It turns out to be a series of controlled Z-rotations. For N = 2, we know
that A2 = S, which is indeed a Z rotation.

Exercise 100: What is the angle θ such that RZ(θ) = S?

For the general case, define the gate

Rk :=

[
1 0

0 e2πi/2
k

]
(13.26)

Exercise 101: Express the Rk gate as a Z rotation.

Exercise 102: Verify that Rk = S for k = 1.

We now state the QFT circuit in the “general” case. Here, general means on four qubits because TEX’ing
QFT circuits is a pain. it is easy to generalize this structure to an arbitrary n qubits, however.

• • • H ×

• • H R1 ×

• H R1 R2 ×

H R1 R2 R3 ×

Figure 13.4: The quantum circuit for a QFT on four qubits.

We note again that the SWAP gates can be removed by reordering/relabeling qubits. It is this general
structure that the QFT circuit follows for n qubits.

Exercise 103: Draw the QFT circuit on three qubits. Hint: You need to swap the “outer” qubits here.
When you have an odd number, there’s always one qubit in the middle that doesn’t need to be swapped.

Exercise 104: Draw the QFT circuit on five qubits.

Exercise 105: For the QFT circuit on four qubits in Figure 13.4, draw the equivalent circuit with no
SWAP gates.

�Warning! Remember above we mentioned that the QFT has exponentially better asymptotic scaling
than the FFT but with an important caveat. It’s time we mention that caveat. The QFT is performed with a
quantum circuit. As such, Fourier coefficients become amplitudes in the wavefunction. This means we can’t
access them directly! Any users wishing to use the QFT to actually compute Fourier coefficients are vastly
misled, and will be persecuted without trial! State tomography is exponential in the number of qubits, so
any advantage is instantly lost.

What’s the purpose of the QFT then, if we can’t even know what we’re computing? As is common in
quantum algorithms, the utility is different, or more subtle, than you originally think. The point of doing
a QFT is to change bases and “see the problem in a new way.” We’ll see an example of this with Shor’s
algorithm with the ability to compute periods. Below, we’ll highlight a property of the QFT in that it maps
frequency information to basis information, and vice-versa.

91

QUIC SEMINAR 13. SHOR’S ALGORITHM PART 2: THE QUANTUM FOURIER TRANSFORM 92

13.3 Properties of the QFT

The first thing we should verify is the number of single qubit and two-qubit gates in the QFT circuit for n
qubits. Since there is a Hadamard gate on each qubit, there will be a total of n single qubit gates. How
about the controlled-Z rotations? There are n− 1 to start, then n− 2, then n− 3 and so on until just 1. In
total, then, the number of gates (single qubit and two qubit) is

1 + 2 + · · ·+ (n− 2) + (n− 1) + n =
n(n+ 1)

2
. (13.27)

This proves that the asymptotic scaling is O(log2(N)) where N = 2n.
As a note, some of these Z-rotations have exponentially small angles. Indeed, by definition of the Rk

gate, the angle is of order 2−k. For large k, this is close to zero, so the gate is approximately the identity
gate. This is the idea of the approximate QFT: ignore all Rk gates for k greater than some specified cutoff
value. Although we won’t divulge here, the AQFT can get the scaling down to O(log(N) log log(N)).

Now that we have shown how to efficiently construct a QFT circuit, we mention one more property of the
QFT which is useful in Shor’s algorithm and elsewhere. In fact, this is probably the most useful property of
the QFT to both know and conceptually understand. First, we’ll state the conceptual understanding:

The QFT maps between basis information and frequency information.

This may be unclear now, but it should become clear after the following discussion. After this discus-
sion, re-read this point—it’s a good way to understand what the QFT is doing without digging into the
mathematical details.

Consider a product state on n qubits

|j⟩ := |j1⟩|j2⟩ · · · |jn⟩. (13.28)

In the following theorem, we’ll use the binary decimal notation

0.j1j2 · · · jn :=

n∑

k=1

jk2
−k. (13.29)

Theorem 13.3 (Action of QFT: Basis information ↔ frequency information). Let |j⟩ be as above. Then,

QFT|j1⟩|j2⟩ · · · |jn⟩ =
|0⟩+ e2πi0.j1j2···jn |1⟩√

2
⊗ |0⟩+ e2πi0.j2···jn |1⟩√

2
⊗ · · ·⊗ |0⟩+ e2πi0.jn |1⟩√

2
. (13.30)

It is useful to highlight the inverse transform as well:

QFT−1

[|0⟩+ e2πi0.j1j2···jn |1⟩√
2

⊗ |0⟩+ e2πi0.j2···jn |1⟩√
2

⊗ · · ·⊗ |0⟩+ e2πi0.jn |1⟩√
2

]
= |j1⟩|j2⟩ · · · |jn⟩.

(13.31)

The current proof I have for this is technical and not very enlightening (the one from Nielsen and Chuang).
I’ll omit the proof for now until I think of a better explanation.

For now, just note that Theorem 13.3 is potentially the most useful property and the one we’ll use in the
quantum part of Shor’s algorithm, which we’ll get to next seminar! Don’t let this final fact outweigh the
importance of our efficient construction of the QFT, however. Both properties are equally important.

Exercise 106: Construct a quantum circuit for the inverse QFT on, say, four qubits. Hint: You could
proceed from first principles like how we built up the forward QFT, but we already did this once! Try to
leverage the knowledge we already have, in particular Figure 13.4.

92

