
QuIC Seminar 14
Shor’s Algorithm Part 3

Contents
14.1Defining the quantum problem . 94
14.2 Solving the quantum problem with a quantum algorithm 95
14.3What can be measured? Destructive and constructive interference 97

14.3.1 An important subtlety: Partial constructive interference 99
14.4Doing the post-processing . 100

14.4.1 The continued fractions algorithm . 101
14.5Tidying up: Some additional details . 102

14.5.1 The modular exponential oracle . 102

Alright, we’ve done most of the heavy lifting up front and set the stage. The pieces are now ready to fall
into place—this one should go quickly. Without further adieu, let’s define the problem we need our quantum
computer to solve.

14.1 Defining the quantum problem

Remember Simon’s problem? Given a function f : {0, 1}n → {0, 1}n such that

f(x) = f(y) ⇐⇒ x = y ⊕ s, (14.1)

determine s by querying f? In this case, the secret string s didn’t do much practically for us, but we did
find a fast quantum algorithm for figuring out what s was.

Can you guess how Shor tweaked this problem for factoring? Remember we care about the period of the
modular exponential function.

Definition 14.1 (Shor’s period-finding problem). Let n = pq with p and q prime. Let x ∈ Zn and
consider the modular exponential function fx : Z+ → Zn defined by

fx(r) := xr mod n (14.2)

which satisfies the condition
f(r) = f(t) ⇐⇒ r = t+ ks (14.3)

where s is the period of fx and k is an integer. Shor’s problem is to determine the period s by
querying fx (as few times as possible).

Looks pretty similar to Simon’s problem, right? Just wait until you see how similar the algorithms are.

94

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 95

14.2 Solving the quantum problem with a quantum algorithm

Remember the Deustch-Jozsa algorithm, or what we might call a chant or dance at this point? Hadamard!
Query! Hadamard!

And do you remember how the Bernstein-Vazirani algorithm went? Hadamard! Query! Hadamard!
And Simon’s algorithm? Hadamard! Query! Hadamard! (Post-process!)
Well, Shor learned how to dance from these folks, but that didn’t stop him from adding a little razzle

dazzle of his own to the quantum circuit dance floor. His new move? The Quantum Fourier Transform
(QFT).

Shor’s algorithm for period-finding

1. Hadamard!

2. Query!

3. Fourier transform!

4. Post-process!

As an interesting aside, we saw previously that the QFT on the all zero state is the same thing as
Hadamards on each qubit in the all zero state. So, the first step in Shor’s algorithm could be stated as
a QFT, or more appropriately as a QFT†. Recall, we defined the QFT† to go from basis information to
frequency information, and so the QFT goes from frequency information to basis information. What does
this mean for Shor’s period finding algorithm? The query takes place in frequency space. The procedure is
thus: computational basis→ frequency space→ query→ computational basis→ measure. (And then make
sense of the measurement results.)

Exercise 108: As a conceptual exercise, re-frame the DJ, BV, and Simon’s algorithm in light of the
QFT and the above discussion. How can we interpret/understand these algorithms by inserting a QFT for
Hadamards?

Well this is a good conceptual understanding of what’s going in the algorithm, and a good way to
remember it, it’s probably not the most enlightening on a first read. So, let’s dig into the mathematical
details to see what’s going on.

As a guiding light to our understanding, let’s look at the quantum circuit diagram for the first three
steps of the period finding algorithm, shown in Fig. 14.1. (The similarity to Simon’s algorithm should now
be very clear!)

|0⟩ H⊗n

Qf

QFTn
✌✌✌

|0⟩
Figure 14.1: High-level quantum circuit diagram for Shor’s period-finding algorithm.

The top register contains nQ :=
⌈
logN2

⌉
qubits and has dimension Q := 2nQ . Conceptually, we can

remember that Q ∼ N2. The query Qf is defined by

Qf |r⟩|k⟩ = |r⟩|k ⊕ fx(r)⟩ (14.4)

where fx(r) := xr mod N is the modular exponential function. We will come back to this later, but this
query can in fact be efficiently implemented! Shor’s algorithm really is end-to-end in the sense that all details
are worked out down to circuit implementations of the oracle. (Unfortunately, it’s one of the few which is
end-to-end.)

95

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 96

For now, we have enough to examine the effect of the above circuit. It follows very closely the analysis
of Simon’s algorithm.

|0⟩|0⟩ H⊗Q

7−−−→ 1√
Q

Q−1∑

r=0

|r⟩|0⟩ (14.5)

Qf7−−→ 1√
Q

Q−1∑

r=0

|r⟩|fx(r)⟩ (14.6)

(14.7)

At this point, we use the principle of implicit measurement to “condition” on a particular value of the second
register. More specifically, since we’re done with the bottom register of qubits, we can imagine they are
measured and the result is some value f . Since the two registers are entangled, this process affects the top
register. Specifically, it selects all valid states k such that fx(k) = f .

Recall that fx(r) is periodic. Let’s call the period s. This means that if k is a valid state such that
fx(k) = f , then so is k + s, k + 2s, and so on. Thus if we had measured the bottom register as f , the top
register would be in a state

1√
L
[|k⟩+ |k + s⟩+ · · · |k + (L− 1)s⟩] = 1√

L

L−1∑

l=0

|k + ls⟩ (14.8)

where the prefactor L−1/2 ensures normalization.

Exercise 109: How do we know there is some finite number L of such terms? Could the number be
infinite? (Hint: What is the domain of fx?) What is the largest L could be?

So we have worked out the case where we conditioned on a particular measured value f . To go to the
general case is simple enough, now: We just simply iterate over the possible values of f , which corresponds
to adding a second summation over the parameter k in (14.8). Explicitly, the wavefunction after tracing out
the bottom register is

1√
Q

1√
L

Q−1∑

k=0

L−1∑

l=0

|k + ls⟩ (14.9)

where again s is the period of the modular exponential function fx(r) := xr mod N . As we’ve traced out
the bottom register, we no longer write it and are only looking at the top register.

At this point, we bust out the new dance move we’ve built up to blow everyone away: the Quantum
Fourier transform (QFT). All we need to do is apply what we already know–namely, the effect the QFT
has on basis states. We remember that conceptually the QFT maps from basis information to frequency
information. More analytically, we apply Definition 13.3 (using linearity) to the state (14.9) to get

|Ψ⟩ := 1

Q
√
L

Q−1∑

j=0

Q−1∑

k=0

L−1∑

l=0

ωj(k+ls)|j⟩ (14.10)

where ω := e2πi/Q.

Exercise 110: Prove (14.11) by applying the definition of the QFT to (14.9) and using linearity.

Noting that ωj(k+ls) = ωjkωjls, we factor the first term out of the summation over l to write

|Ψ⟩ = 1

Q
√
L

Q−1∑

j=0

Q−1∑

k=0

ωjk
L−1∑

l=0

ωjls|j⟩ (14.11)

96

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 97

14.3 What can be measured? Destructive and constructive interference

The pertinent question now given the state |Ψ⟩ is:

What possible values can we measure?

If we were to measure some state |j⟩, the coefficients of this state better not sum to zero. (Otherwise,
of course, there would be no probability of measuring this state.) What does this mean in terms of the
coefficients

L−1∑

l=0

ωjls =

L−1∑

l=0

e2πijls/Q (14.12)

where j is an integer j = 0, 1, 2, ..., Q− 1?
There’s a lot of symbols here! We can simplify and still retain the essence of this expression. Explicitly,

we can consider the sum
S(s,Q) :=

∑

q

e2πiqs/Q (14.13)

where q = 0, 1, 2, ..., LQ for some integer L and s < Q is an integer. (You should convince yourself this is
the exact same expression as above, just with one fewer symbol.)

Example 1: An instructive sum to zero.
The goal of this example is straightforward: Evaluate S(3, 4).

The payoff will be a good understanding of the types of states we can measure in Shor’s algorithm.
The key objects of interest for this example are the exponential terms

E(q) := e2πiqs/Q = e3πiq/2 (14.14)

where q = 0, 1, 2, 3. (We are taking L = 1 here for simplicity, though this is not necessary.) A simple
calculation produces the following table.

q E(q)
0 1
1 -i
2 -1
3 i

Thus, the summation S(3, 4) is zero! In terms of Shor’s algorithm, this would mean that the state |j⟩
with this coefficient could never be measured.

Figure 14.2 below gives a geometric picture for evaluating this sum.

In the above example, we saw a case where s/Q was not an integer and the sum S(s,Q) was zero. It
turns out that this is the general case!

Theorem 14.1 (Destructive interference in Shor’s algorithm). Define

S(s,Q) :=

Q−1∑

q=0

e2πiqs/Q (14.15)

where s and Q are integers. If s/Q is not an integer, then S(s,Q) = 0.

Before a potentially non-enlightening algebraic proof, it’s actually easy to see why this is geometrically.
Each exponential exp(2πiqs/Q) for q = 0, 1, 2, ..., Q − 1 is a complex number with unit length. As such, it
can be represented by a vector pointing from the origin to a point on the unit circle. If s/Q is not an integer,
then every vector will be equally spaced (in terms of angles) in the complex plane, therefore resulting in the
total sum being zero.

97

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 98

Figure 14.2: Representing the sum S(s,Q) where s = 1 geometrically. The horizontal axis is the real axis,
and the vertical axis is the imaginary axis. On the left, Q = 2. In the middle, Q = 3. And on the right,
Q = 4. In each, it is clear that the sum over all vectors is identically zero.

This should be enough intuition, but it’s nice to have an algebraic argument as well, which we include
below. The idea is the same, though.

Proof. We can use the “exponential sum formula”

Q−1∑

q=0

eiqx =
1− eiQx

1− eix
. (14.16)

Using x = 2πs/Q, we thus have

S(s,Q) :=

Q−1∑

q=0

e2πis/Q =
1− e2πis

1− e2πis/Q
= 0. (14.17)

In the last step, we used that s/Q is not an integer so that the denominator isn’t zero.

Since we singled out the case where s/Q is not an integer, it is natural to ask about the case when s/Q
is an integer. Here, the sum is simpler to evaluate. Every exponential exp(2πiqs/Q) has the form e2πi = 1
raised to some integer (namely, qs/Q). Thus, every term in the sum is one, and the total sum is Q. We have
therefore proved the following.

Theorem 14.2 (Constructive interference in Shor’s algorithm). Define

S(s,Q) :=

Q−1∑

q=0

e2πiqs/Q (14.18)

where s and Q are integers. If s/Q is an integer, then S(s,Q) = Q.

We now translate back to the original notation from the state |Ψ⟩ in (14.11) to see the important takeaway.
Namely, we learned that we can only measure a state |j⟩ with amplitude

L−1∑

l=0

e2πijls/Q (14.19)

if js/Q is an integer. In other words, if we measure |j⟩, then we know that js/Q is an integer. Actually, this
is not completely true, as the next section explains.

98

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 99

��� ��� ��� ��� ��� ��� ���

� � � ���

���

���

���

���

���

���

��
��

��

���� ���� ���� ���� ���� ���� ����

� � � ���

���

���

���

���

���

���

��
��

��

Figure 14.3: A plot of |S(r)| defined in (14.20). Note that the vertical axis has be scaled to one for aesthetics.
As can be seen, there is perfect constructive interference when s/Q is an integer—here 1, 2, or 3. There is
destructive interference when s/Q is far from an integer, and partial constructive interference when s/Q is
close to an integer. This is magnified in the bottom plot where we have zoomed in around r = 2.

14.3.1 An important subtlety: Partial constructive interference
Although we have the two mutually exclusive cases

1. s/Q is an integer =⇒ constructive interference,

2. s/Q is not an integer =⇒ destructive interference,

it is more important to treat the cases on a continuum. For example, what if s/Q = 0.9999999? This is
not an integer, but it’s certainly close to one1. What happens in this case? Is there perfect destructive
interference? Or do we get “mostly” constructive interference?

As you might imagine (not from the section title!), since each exponent will be close to an integer, each
exponential in S(s,Q) will be close to one. Although there won’t be perfect constructive interference, there
will still be constructive interference. We can quantify how much based on how close s/Q is to an integer.
Before this, however, an example to build intuition:

1Pun intended.

99

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 100

Example 2: Partial constructive interference in Shor’s period finding algorithm.
Consider the sum S(s,Q). Let’s fix Q to be some power of 2, for example 256. Now, let’s examine how
the sum behaves for different ratios s/Q =: r. Explicitly, we consider the modulus of the sum

|S(r)| :=
�����
256∑

q=1

e2πirq

����� (14.20)

and plot this as a function of r from 0.5 to 3.5. The result is shown in Figure 14.3. As we see here, we
get perfect constructive interference when s/Q is exactly an integer. However, as we have argued, this is
an idealized scenario—the value of s/Q lies on a continuum. Thus, the second case (when s/Q is not an
integer) needs to be clarified.

As we have argued above, we see (especially in the bottom plot of Fig. 14.3 that when s/Q is close
to an integer, we get partial constructive interference. And when s/Q is far from an integer, we get
destructive interference.

The above argument and example shows that we can refine our findings as follows:

If we measure a state |j⟩, then we know that js/Q is close to an integer.

This is qualitative, but important for conceptually understanding the post-processing of Shor’s algorithm.
The following exercise makes the above statement more quantitative.

Exercise 111: Let m ∈ Z and js/Q = m+ ϵ where 1 ≫ ϵ ∈ R.

(a) Show that the amplitude of the state |j⟩ (ignoring global phase) in (14.11) is

amp(|j⟩) = 1− e2πiϵL

1− e2πiϵ
. (14.21)

(b) Show that the probability p of measuring the state |j⟩ is

p = 2
[1− cos 2πϵL][1 + cos 2πϵ]

1− cos 4πϵ (14.22)

(c) Using cos(x) ≈ 1− x2/2, show that we must have

ϵ ≤ 1

π

√
1− p/L2 (14.23)

in order to have a probability of at least p for measuring the state |j⟩.

14.4 Doing the post-processing

Alright, big picture:

After running the quantum circuit, we have an integer

j = mQ/s± ϵ (14.24)

where m ∈ Z and 1 ≪ ϵ ∈ R.

Our goal is to determine the period s of the modular exponential function, which allows us to factor N .
We know what Q is (the dimension of the top register of the circuit), and we know what j is because we
measured it. We do not know what the integer m is.

Since we know j and Q, we can determine an approximation not of s, but of m/s. In particular,
rearranging (14.24), we have that ����

j

Q
− m

s

���� ≤
ϵ

Q
(14.25)

100

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 101

Thus the ratio j/Q, which we know, is close to m/s, which is (close to) what we what to know.
After running Shor’s circuit, we can look at the resulting probability distribution—the diffraction pattern

of the number N . This information will tell us several integers j where the probability peaks, and the
height/width of the probability distribution at these locations tells us ϵ from (14.23). For example, if p = 1,
then ϵ = 0 and we measure j/Q = m/s exactly.

Generally, we are not going to get a perfect distribution with probability spikes of one at particular
integers. There will be some distribution about clusters of integers, as mentioned, and we will actually take
away floating point numbers a1, ..., ak as well as ϵ.

Now the question is: We have some floating point (decimal) number a that is ϵ away from an integer
multiple of 1/s. Specifically, we know an a and ϵ such that

|a−m/s| ≤ ϵ (14.26)

where m ∈ Z. How do we determine m/s from this?

14.4.1 The continued fractions algorithm
The answer to the above question is the continued fractions algorithm. Nearly everyone agrees, regardless of
their usual (lack of) pedagogy, that it is best explained through an example.

Example 3: The continued fractions algorithm.
Suppose we run Shor’s algorithm and learn that a = 0.334. One might guess that m/s = 1/3, but there is
a more systematic way of doing this. The systematic way is the continued fractions expansion, performed
as follows:

0.334 =
334

1000

=
1

1000
334

=
1

2 + 332
334

=
1

2 + 1
334
332

=
1

2 + 1
1+ 2

332

At this point, we get to spare the LaTeX compiler and those with bad eyes! Why? The fraction 2/332
(the last one in the expansion, if you can’t see it) is small! Hence it is reasonable to truncate here, from
which we find that

0.334 ≈ 1

2 + 1
1+0

=
1

3
, (14.27)

which matches our expectation.

Any real number can be expanded in such a fashion. As you might expect, rational numbers have a finite
expansion, and irrational numbers have an infinite expansion. There is a theorem (see Nielsen and Chuang)
which states that this procedure can be done efficiently and accurately.

The last step of the algorithm is to perform the continued fractions algorithm “a few more” times. In
particular, we perform continued fractions (CF) with j1/Q to get m1/s, perform CF with j2/Q to get m2/s.
If we are unlucky, we may have to perform continued fractions with another j3/Q to get m3/Q, but you get
the idea.

The idea is that both m1/s and m2/s share the denominator of s. If m1 and m2 are different (i.e., we
did not get unlucky), then we can determine s.

101

QUIC SEMINAR 14. SHOR’S ALGORITHM PART 3 102

14.5 Tidying up: Some additional details

Shor’s algorithm is intricate, but we still did not cover all details. One important one that we mentioned
was evaluating the modular exponential oracle to compute fx(r) := xr mod N .

14.5.1 The modular exponential oracle
Here, we will not derive a complete quantum circuit which implements this oracle. Instead, we will argue
that it is indeed efficiently implementable. In future seminars, we may derive it, or rather build it up.

The idea as to why fx has an efficient circuit is that multiplication is classically efficient. Indeed,
multiplication between two b-bit numbers takes time O(b2) by the standard “grade-school” multiplication
algorithm. Any classical circuit that is efficient can be easily made into a quantum circuit which is also
efficient, for example using Toffoli gates. (A perhaps deeper statement is that classical computing is a subset
of quantum computing—namely, quantum computing restricted to the computational basis.)

“But,” you interject, “we’re not talking about multiplication... we’re talking about exponentiation!” A
good point, but this doesn’t change the efficiency. Why? Through the trick of repeated squaring.

Example 4: Repeated squaring.
How many multiplications does it take to do x8?

If your answer is seven (or eight—module off by one errors), would you be surprised to hear that the
minimum number of multiplications is three?

Rather than doing x · x · x · x · x · x · x · x, we can do the much more efficient x · x to get x2 using
one multiplication. Then, once we have x2, we can do x2 · x2 to get x4 for a total of two multiplications.
Finally, we do x4 · x4 to get x8 for a grand total of three multiplications.

So, as the above example shows, to compute fx(r) = xr mod N , we do not have to do O(r) multiplica-
tions but rather O(lg r) multiplications. Recall the range for r is one to N , so at most we have to do O(lgN)
multiplications, which is efficient.

As I mentioned, we won’t show how to do the exponentiation (which involves multiplication, which
involves addition, which involves sums and carries, which involves a bunch of Toffoli gates) right now, but
we may in future seminars2. For the moment, we can rest easy knowing that it can be evaluated efficiently.

References

I owe a great deal to Scott Aaronson’s lecture notes which my exposition of Shor’s algorithm is based off.

2There’s also very cool quantum arithmetic circuits based on QFTs which we will cover at some point.

102

