QuIC Seminar

Simon’s Algorithm
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While Bernstein-Vazirani gave us a linear speedup in the query model, Simon’s algorithm will give us a
more impressive speedup: exponential. Indeed, Simon’s algorithm (1994) was the first quantum algorithm
with such an exponential speedup. The story goes that Simon was unimpressed by recent papers (like
Deustch-Jozsa and Bernstein-Vazirani) and set out to prove there couldn’t be any real quantum speedup.

9.1 Simon’s Problem

The problem Simon considered!was the following.

Definition 9.1 (Simon’s Problem). Let f be a function from n-bit strings to n-bit strings
f:{0,1}" — {0,1}" (9.1)

such that, for all z,y € {0,1}"
flz)=fly) <= z=yd®s. (9.2)

Here, s € {0,1}™ is a “secret string” and @ denotes bitwise addition module two. Simon’s problem is
to find s by querying f (as few times as possible).

The bitwise addition module two (also bitwise XOR) is best understood by vector addition. The following
example should remove any ambiguity.

Example 1: Bitwise XOR
Consider s1, 52,53 € {0,1}® defined by

s1 := 010 s9 1= 110 59 1= 001.

Then,

s1 D s = 100, s1 @ sz =011, So P sz = 111.

LOr rather found. These quantum algorithms are always discovered by seeing what the quantum computer can do well, then
framing the problem around that.
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Here, we take the first bits of each string, add them together, and take the result modulo two. We continue
in this fashion for all bits in the bit strings.
One may see what’s going on even clearer by representing the bit strings as vectors in Zy. Then, for

example
s1@® sy =(0,1,0)® (1,1,0)
=(0+4+1 mod2,1+1 mod2,0+0 mod2)

= (1,0,0).

One property that should be clear from the vector representation is the following distribution law:
(2’1 D 22) 23 =21-220D 2123 (93)

Here, each z; is a length n bit string and the - denotes the inner product (modulo two). We’ll use this
property during the analysis of Simon’s algorithm.

Exercise 82: Prove (9.3) by direct computation.
First, we consider examples of functions f with the “Simon property” (9.2).

Example 2: Functions with Simon’s Property
Consider the function f : {0,1}? with the secret string s = 110 defined by the following table of values.

x | f(x)
000 | 101
001 | 010
010 | 000
011 | 110
100 | 000
101 | 110
110 | 101
111 | 010

It’s not hard to see that the property (9.2) holds. For example, we have f(000) = 101 = f(110). By
taking the input of the first (000) and applying the XOR mask s, we indeed get the second input 110,
since 000 @ s = 000 & 110 = 110. Thus, Simon’s property hold’s here. Note that Simon’s property is
symmetric—i.e., we could have applied the XOR mask s to the second bit string to get the first. Indeed,
110 s = 110 @ 110 = 000.

Exercise 83: Find the other three pairs of “matching inputs” and verify that Simon’s property holds
for those inputs as well.

Thus, functions f with Simon’s property are two-to-one functions,?meaning that there are exactly two

inputs which produce the same output. What are these two inputs? Simon’s property gives no restrictions
on what they can be, only how they are related. Namely, by flipping the bits of one input at all locations
where the secret string s has a one, we obtain the other input.

9.2 Classical Query Complexity

In the classical setting, we send a bit string 1 to our query as input and learn the output f(z1). We then
do this for another input s — f(z2). Before we ask how many queries it takes us to solve Simon’s problem
(i.e., compute s), let’s first ask the simpler question: how do we compute s in the first place?

2Unless s is the all zero bit string, in which case f is a one-to-one function. For simplicity, we’ll exclude this case in our
analysis and assume the more general case of s # 0.
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Suppose you send an input x; into the query and get out f(x;). After some more inputs, you send another
input x; to learn f(x;). By keeping record of the function values, you remember that f(z;) = f(z;). Can
you determine s from this? If so, how?

Example 3: Computing s from collisions.

Consider the function f given in Example 9.1. Suppose you first send in the input z; = 010 and then the
input 2o = 100. As can be seen in the table, both inputs produce the same output. Verify that the secret
string s satisfies s = 1 @ x2. Do this for all other “matching inputs” (i.e., pairs of inputs that produce
the same output).

It’s not hard to see that this is always the case—i.e., we can always find s by finding a “collision pair” or
“matching pair” of inputs = and y.

Exercise 84: Prove that z @ z = 0 (the all zero bit string) for all z € {0,1}". Use this fact to prove
that
s=xPy (9.4)

for x, y, and s in (9.2).

We now know that we can compute s, thereby solving Simon’s problem, by finding a collision pair. The
question now is:

How many queries does it take to find a collision pair?

One thing we could do is just query every value of the function f. Then we could look through and surely
find a matching pair!How many queries does this take? Well, f is a function on bit strings of length n, and
there are 2™ total such bit strings. Thus, we can solve Simon’s problem in at most 2" queries. Can we do
any better than this?

The answer is yes, but not significantly better. I claim we can do quadratically better than 2" queries
by the same reasoning (or lack thereof) in the famous birthday paradoz.

Example 4: The birthday paradox
Suppose you're in a room with 23 people. What’s the probability that any pair of people share a birthday?
Are you surprised to hear its about 50%7?

One may naively expect we’d need on the order of 365 people to get a match, since there are 365 days
in the year. The key here is that we care about any pair. Why is this important?

Suppose we have n people. How many pairs can we form? There are n choices for the first person,
then n — 1 choices for the second person (since we've already chosen one). Of course “Alice and Bob” is
the same pair as “Bob and Alice” as far as we’re concerned, so we’d better divide the total number by
two to account for this. Thus, the total number of pairs of n people is

n(nfl).

5 (9.5)

Combinatorically, we could have wrote down the answer immediately as

<Z> - w (9.6)

So, we’ve learned that the number of pairs doesn’t grow linearly in the number of people. It actually
grows quadratically, to leading order:
n(n—1)
2
For the birthday paradox, the key realization is that once the number of pairs is on the order of 365, we
have a good probability of finding a collision pair.

= 0(n?). (9.7)

3Recall we're excluding the case that s is the all zero bit string, for simplicity. Though, the analysis really isn’t much different
here. If we queried everything and didn’t find a match, we could be pretty sure (i.e., positive) that s = 0.
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The same is true for Simon’s algorithm. Suppose we send in ¢ input values to our query at random. After
t queries, we have roughly ¢? pairs. We can expect to find a matching pair once t? = O(2"), i.e., t = O(2"/?).

Since we want to prove a quantum speedup, we have to consider the best case classical query complexity.
It’s possible to rigorously show that the best query complexity of a randomized classical algorithm cannot
be better than O(2™/2). We’ll present a “semi-rigorous”* argument as to why this is the case.

Theorem 9.1. The best query complexity for a randomized classical algorithm solving Simon’s problem
is at least O(2"/2).

After we’ve made one query on the input z, the probability of getting a collision after one more input y
is
1
-1
Why is this? There are 2™ total outcomes and we’ve already queried one (hence the minus one). Now, the
probability of a collision after ¢ queries is®

P(x =vy)

(9.8)

()

P(collision after ¢t queries) < TR

(9.9)

Thus, if we want this probability to be “good” (say 1/2), then it’s easy to see we must take t = O(2"/2).

9.3 Quantum Query Complexity

Now’s the fun (quantum!) part: I claim that there’s a quantum algorithm that solves Simon’s problem with
O(n) queries, an exponential improvement! What’s the proof of this? Simon’s algorithm!

9.3.1 Simon’s Algorithm

Simon’s algorithm, or at least the quantum part, is shown in the circuit diagram below.

‘0> H®n H®n /74
Qy

10)
Figure 9.1: Quantum circuit implementing the quantum part of Simon’s algorithm.

The circuit uses 2n qubits arranged in two registers of n qubits each. Note that we're using a single line
in the top register to represent n qubits, and similarly in the bottom register.

Exercise 85: Write out the circuit in Fig. 9.1 to explicitly show all 2n qubits and wires.

This circuit represents the “quantum part” of Simon’s algorithm, which consists of the following high-level
steps.

Definition 9.2 (Simon’s algorithm). Simon’s algorithm is a hybrid quantum-classical algorithm that
implements the following two steps.
(1) Run the circuit shown in Fig. 9.1 m = O(n) times.

dcf. semiclassical.
5Here we’re using the union bound, a fundamental postulate of probability theory, which states that the probability of a
union of events is at most the probability of the sum of events. Mathematically,

P <LZJ E,) < ;P(Ei).

The expression is an equality for mutually exclusive events.
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(2) Perform classical postprocessing on the output that scales efficiently in n to determine s.

Let’s break down these steps in more detail, first examining what Simon’s circuit does for us. We start
out with two registers in the zero state and perform Hadamard gates on all qubits in the top register:

0)°" @ [0)°" — 1" @ [0)°" = Y |z) @ [0)°" (9.10)
z€{0,1}m
(Here, as in other places, we omit normalization factors for simplicity.) We then make a query, using the
first type

Qslz,a) = |z, f(x) & a). (9.11)

Doing so yields the state
Yo W0 — > ) @|f(x). (9.12)

ze{0,1}m z€{0,1}n

Note that although the terms inside the summand are written as tensor products, the resulting state is
(most generally) entangled. If this confuses you, consider the following exercise.

Exercise 86: To see that the sum of tensor product states (9.15) can be entangled, show that the state

=

) = 14) ®14) (9.13)

§=0
is entangled. Which entangled state is it?

Note that at this point (9.15) we’re done with our bottom register of qubits—no more operations happen
on it. This is somewhat non-intuitive—why did we make a query in the first place, if we're not going to
do anything with the second register |f(z)). The reason we do this is the effect it has on the first register.
These registers are entangled, so the simple act of making the query affects our top register in a beneficial
(computationally speaking) way. We’ll see the particular affect this query has shortly.

Simon’s circuit now tells us to Hadamard all qubits in the top register again. To write this down, we’ll
use the following circuit identity.

Theorem 9.2 (Effect of Hadamard on a computational basis state). Let |x) = |x1---x,) denote a
computational basis state on n qubits. That is, € {0,1}" and each z; € {0,1} denotes a particular
bit value. Then,

Ho"z)= Y (=1)"%|2). (9.14)

z€{0,1}"

Here, the dot product z - z denotes the dot product modulo two.

Exercise 87: Prove Theorem 9.2. Hint: H|xz;) = |0) + (=1)*|1) for all z; € {0,1}.

We can now write the resulting state after the second round of Hadamard gates:

Yo lmelf@)— Y Y ()7 elf(@) (9.15)

z€{0,1}m z€{0,1}™ z€{0,1}"

Now, we’re going to condition on a particular output of the function—this collapses the sum over x and

gives us a particular value of f(x), say f(z) = w®. Note that, because of Simon’s promise, there are two

such inputs that produce this output, call them x; and xs.

Fla1) = f(az) = w. (9.16)

6Formally, we’re taking a partial trace over the second (bottom) register of |f(x)).
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The resulting state after conditioning on this particular outcome is then

Yo Y (DR ef@) Y (DT 4 (-1 |z) @ fw) (9.17)

z€{0,1}™ z€{0,1}m z€{0,1}"

Now Simon’s circuit tells us to measure the top register. We're going to get some output string z, but
the question is, which possible z in the above sum could we measure? If we measure it, then the amplitude
must have interfered constructively—that is,

(—1)"7* = (=1)"~ (9.18)

We can rewrite this condition to say

X1z =x -2z (mod 2). (9.19)

Now, we use the criteria from Simon’s problem, which states that xo = x1 & s, where s is the secret string
we're trying to find. Substituting this expression in and using (9.3), we arrive at the condition

(9.20)

Thus, the result of running Simon’s circuit is that we measure a bit string z € {0,1}" such that it’s inner
product modulo two with the secret string s is zero. This doesn’t tell us s exactly, but it tells us “something
about s.”

Simon’s algorithm then tells us to run this circuit many times, in particular m = O(n) times. What does
this give us? Well, it gives us m bit strings z1, ..., 2, such that

z1-8=0
z9-5=0
Zm5=20

This is a system of m equations in n variables, which we can solve efficiently using classical methods, for
example Gaussian elimination”. This is the second step of Simon’s algorithm—the classical post-processing.
After we solve this, we have found the secret string s, thereby solving Simon’s problem!

Why do we require that we run Simon’s circuit m = O(n) times, instead of just exactly n times? There’s
a small chance that we could measure the same output string, say z; = z;, at two different runs of the circuit,
and we need at least n equations in order to solve the system.

Exercise 88: What’s the probability of measuring the same bit string twice in two independent runs
of Simon’s circuit?

Exercise 89: Prove that there is a high probability of being able to solve the system of equations after
m = O(n) independent runs of Simon’s circuit.

7Gaussian elimination has runtime O(n?®) for an n x n system of equations.
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